import faiss import numpy as np from fastapi import FastAPI, Query from fastapi.responses import JSONResponse from datasets import load_dataset from sentence_transformers import SentenceTransformer from typing import List, Dict app = FastAPI() FIELDS = ( "full_name", "description", "default_branch", "open_issues", "stargazers_count", "forks_count", "watchers_count", "license", "size", "fork", "updated_at", "has_build_zig", "has_build_zig_zon", "created_at", ) model = SentenceTransformer("all-MiniLM-L6-v2") def load_dataset_with_fields(name, include_readme=False): dataset = load_dataset(name)["train"] repo_texts = [ " ".join(str(x.get(field, "")) for field in FIELDS) + (" " + x.get("readme_content", "") if include_readme else "") + " " + " ".join(x.get("topics", [])) for x in dataset ] if not include_readme: dataset = [{k: v for k, v in item.items() if k != "readme_content"} for item in dataset] return dataset, repo_texts datasets = { "packages": load_dataset_with_fields("zigistry/packages", include_readme=True), "programs": load_dataset_with_fields("zigistry/programs", include_readme=True), } indices = {} for key, (dataset, repo_texts) in datasets.items(): repo_embeddings = model.encode(repo_texts) index = faiss.IndexFlatL2(repo_embeddings.shape[1]) index.add(np.array(repo_embeddings)) indices[key] = (index, dataset) def filter_results_by_distance(distances, idxs, dataset, threshold_ratio=0.3): if len(distances) == 0: return [] min_distance = np.min(distances) max_distance = np.max(distances) threshold = min_distance + ((max_distance - min_distance) * threshold_ratio) results = [ dataset[int(i)] for d, i in zip(distances, idxs) if d <= threshold ] return results @app.get("/searchPackages/") def search_packages(q: str): key = "packages" index, dataset = indices[key] query_embedding = model.encode([q]) distances, idxs = index.search(np.array(query_embedding), len(dataset)) results = filter_results_by_distance(distances[0], idxs[0], dataset) headers = {"Access-Control-Allow-Origin": "*", "Content-Type": "application/json"} return JSONResponse(content=results, headers=headers) @app.get("/searchPrograms/") def search_programs(q: str): key = "programs" index, dataset = indices[key] query_embedding = model.encode([q]) distances, idxs = index.search(np.array(query_embedding), len(dataset)) results = filter_results_by_distance(distances[0], idxs[0], dataset) headers = {"Access-Control-Allow-Origin": "*", "Content-Type": "application/json"} return JSONResponse(content=results, headers=headers)