|
import faiss |
|
import numpy as np |
|
from fastapi import FastAPI, Query |
|
from datasets import load_dataset |
|
from sentence_transformers import SentenceTransformer |
|
|
|
app = FastAPI() |
|
|
|
FIELDS = ( |
|
"full_name", "description", "watchers_count", "forks_count", "license", |
|
"default_branch", "has_build_zig", "has_build_zig_zon", "fork", |
|
"open_issues", "stargazers_count", "updated_at", "created_at", |
|
"size" |
|
) |
|
|
|
model = SentenceTransformer("all-MiniLM-L6-v2") |
|
|
|
def load_dataset_with_fields(name, include_readme=False): |
|
dataset = load_dataset(name)["train"] |
|
repo_texts = [ |
|
" ".join(str(x.get(field, "")) for field in FIELDS) + |
|
(" " + x.get("readme_content", "")) * include_readme + |
|
" " + " ".join(x.get("topics", [])) |
|
for x in dataset |
|
] |
|
if not include_readme: |
|
dataset = [{k: v for k, v in item.items() if k != "readme_content"} for item in dataset] |
|
return dataset, repo_texts |
|
|
|
datasets = { |
|
"packages": load_dataset_with_fields("zigistry/packages", include_readme=True), |
|
"programs": load_dataset_with_fields("zigistry/programs", include_readme=True), |
|
} |
|
|
|
indices = {} |
|
for key, (dataset, repo_texts) in datasets.items(): |
|
repo_embeddings = model.encode(repo_texts) |
|
index = faiss.IndexFlatL2(repo_embeddings.shape[1]) |
|
index.add(np.array(repo_embeddings)) |
|
indices[key] = (index, dataset) |
|
|
|
scroll_data = { |
|
"infiniteScrollPackages": load_dataset_with_fields("zigistry/packages", include_readme=False)[0], |
|
"infiniteScrollPrograms": load_dataset_with_fields("zigistry/programs", include_readme=False)[0], |
|
} |
|
|
|
@app.get("/infiniteScrollPackages/") |
|
def infinite_scroll_packages(q: int = Query(0, ge=0)): |
|
start = q * 10 |
|
return scroll_data["infiniteScrollPackages"][start : start + 10] |
|
|
|
@app.get("/infiniteScrollPrograms/") |
|
def infinite_scroll_programs(q: int = Query(0, ge=0)): |
|
start = q * 10 |
|
return scroll_data["infiniteScrollPrograms"][start : start + 10] |
|
|
|
@app.get("/searchSomething/") |
|
def search_something(q: str): |
|
key = "packages" if "package" in q.lower() else "programs" |
|
if key not in indices: |
|
return {"error": "Invalid category"} |
|
index, dataset = indices[key] |
|
query_embedding = model.encode([q]) |
|
distances, indices_ = index.search(np.array(query_embedding), len(dataset)) |
|
min_distance = distances[0][0] |
|
threshold = min_distance * 1.5 |
|
results = [dataset[int(i)] for d, i in zip(distances[0], indices_[0]) if d <= threshold] |
|
return results[:280] if len(results) > 280 else results |
|
|