import os import cv2 import numpy as np import torch import gradio as gr # import spaces from glob import glob from typing import Tuple from PIL import Image # from gradio_imageslider import ImageSlider import transformers import torch from torchvision import transforms import requests from io import BytesIO import zipfile torch.set_float32_matmul_precision('high') # torch.jit.script = lambda f: f device = "cuda" if torch.cuda.is_available() else "cpu" ## CPU version refinement def FB_blur_fusion_foreground_estimator_cpu(image, FG, B, alpha, r=90): if isinstance(image, Image.Image): image = np.array(image) / 255.0 blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None] blurred_FGA = cv2.blur(FG * alpha, (r, r)) blurred_FG = blurred_FGA / (blurred_alpha + 1e-5) blurred_B1A = cv2.blur(B * (1 - alpha), (r, r)) blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5) FG = blurred_FG + alpha * (image - alpha * blurred_FG - (1 - alpha) * blurred_B) FG = np.clip(FG, 0, 1) return FG, blurred_B def FB_blur_fusion_foreground_estimator_cpu_2(image, alpha, r=90): # Thanks to the source: https://github.com/Photoroom/fast-foreground-estimation alpha = alpha[:, :, None] FG, blur_B = FB_blur_fusion_foreground_estimator_cpu(image, image, image, alpha, r) return FB_blur_fusion_foreground_estimator_cpu(image, FG, blur_B, alpha, r=6)[0] ## GPU version refinement def mean_blur(x, kernel_size): """ equivalent to cv.blur x: [B, C, H, W] """ if kernel_size % 2 == 0: pad_l = kernel_size // 2 - 1 pad_r = kernel_size // 2 pad_t = kernel_size // 2 - 1 pad_b = kernel_size // 2 else: pad_l = pad_r = pad_t = pad_b = kernel_size // 2 x_padded = torch.nn.functional.pad(x, (pad_l, pad_r, pad_t, pad_b), mode='replicate') return torch.nn.functional.avg_pool2d(x_padded, kernel_size=(kernel_size, kernel_size), stride=1, count_include_pad=False) def FB_blur_fusion_foreground_estimator_gpu(image, FG, B, alpha, r=90): as_dtype = lambda x, dtype: x.to(dtype) if x.dtype != dtype else x input_dtype = image.dtype # convert image to float to avoid overflow image = as_dtype(image, torch.float32) FG = as_dtype(FG, torch.float32) B = as_dtype(B, torch.float32) alpha = as_dtype(alpha, torch.float32) blurred_alpha = mean_blur(alpha, kernel_size=r) blurred_FGA = mean_blur(FG * alpha, kernel_size=r) blurred_FG = blurred_FGA / (blurred_alpha + 1e-5) blurred_B1A = mean_blur(B * (1 - alpha), kernel_size=r) blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5) FG_output = blurred_FG + alpha * (image - alpha * blurred_FG - (1 - alpha) * blurred_B) FG_output = torch.clamp(FG_output, 0, 1) return as_dtype(FG_output, input_dtype), as_dtype(blurred_B, input_dtype) def FB_blur_fusion_foreground_estimator_gpu_2(image, alpha, r=90): # Thanks to the source: https://github.com/ZhengPeng7/BiRefNet/issues/226#issuecomment-3016433728 FG, blur_B = FB_blur_fusion_foreground_estimator_gpu(image, image, image, alpha, r) return FB_blur_fusion_foreground_estimator_gpu(image, FG, blur_B, alpha, r=6)[0] def refine_foreground(image, mask, r=90, device='cuda'): """both image and mask are in range of [0, 1]""" if mask.size != image.size: mask = mask.resize(image.size) if device == 'cuda': image = transforms.functional.to_tensor(image).float().cuda() mask = transforms.functional.to_tensor(mask).float().cuda() image = image.unsqueeze(0) mask = mask.unsqueeze(0) estimated_foreground = FB_blur_fusion_foreground_estimator_gpu_2(image, mask, r=r) estimated_foreground = estimated_foreground.squeeze() estimated_foreground = (estimated_foreground.mul(255.0)).to(torch.uint8) estimated_foreground = estimated_foreground.permute(1, 2, 0).contiguous().cpu().numpy().astype(np.uint8) else: image = np.array(image, dtype=np.float32) / 255.0 mask = np.array(mask, dtype=np.float32) / 255.0 estimated_foreground = FB_blur_fusion_foreground_estimator_cpu_2(image, mask, r=r) estimated_foreground = (estimated_foreground * 255.0).astype(np.uint8) estimated_foreground = Image.fromarray(np.ascontiguousarray(estimated_foreground)) return estimated_foreground class ImagePreprocessor(): def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None: # Input resolution is on WxH. self.transform_image = transforms.Compose([ transforms.Resize(resolution[::-1]), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), ]) def proc(self, image: Image.Image) -> torch.Tensor: image = self.transform_image(image) return image usage_to_weights_file = { 'General': 'BiRefNet', 'General-HR': 'BiRefNet_HR', 'Matting-HR': 'BiRefNet_HR-matting', 'Matting': 'BiRefNet-matting', 'Portrait': 'BiRefNet-portrait', 'General-reso_512': 'BiRefNet_512x512', 'General-Lite': 'BiRefNet_lite', 'General-Lite-2K': 'BiRefNet_lite-2K', 'Anime-Lite': 'BiRefNet_lite-Anime', 'DIS': 'BiRefNet-DIS5K', 'HRSOD': 'BiRefNet-HRSOD', 'COD': 'BiRefNet-COD', 'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs', 'General-legacy': 'BiRefNet-legacy', 'General-dynamic': 'BiRefNet_dynamic', } birefnet = transformers.AutoModelForImageSegmentation.from_pretrained('/'.join(('zhengpeng7', usage_to_weights_file['General'])), trust_remote_code=True) birefnet.to(device) birefnet.eval(); birefnet.half() # @spaces.GPU def predict(images, resolution, weights_file): assert (images is not None), 'AssertionError: images cannot be None.' global birefnet # Load BiRefNet with chosen weights _weights_file = '/'.join(('zhengpeng7', usage_to_weights_file[weights_file] if weights_file is not None else usage_to_weights_file['General'])) print('Using weights: {}.'.format(_weights_file)) birefnet = transformers.AutoModelForImageSegmentation.from_pretrained(_weights_file, trust_remote_code=True) birefnet.to(device) birefnet.eval(); birefnet.half() try: resolution = [int(int(reso)//32*32) for reso in resolution.strip().split('x')] except: if weights_file in ['General-HR', 'Matting-HR']: resolution = (2048, 2048) elif weights_file in ['General-Lite-2K']: resolution = (2560, 1440) elif weights_file in ['General-reso_512']: resolution = (512, 512) else: if weights_file in ['General-dynamic']: resolution = None print('Using the original size (div by 32) for inference.') else: resolution = (1024, 1024) print('Invalid resolution input. Automatically changed to 1024x1024 / 2048x2048 / 2560x1440.') if isinstance(images, list): # For tab_batch save_paths = [] save_dir = 'preds-BiRefNet' if not os.path.exists(save_dir): os.makedirs(save_dir) tab_is_batch = True else: images = [images] tab_is_batch = False for idx_image, image_src in enumerate(images): if isinstance(image_src, str): if os.path.isfile(image_src): image_ori = Image.open(image_src) else: response = requests.get(image_src) image_data = BytesIO(response.content) image_ori = Image.open(image_data) else: image_ori = Image.fromarray(image_src) image = image_ori.convert('RGB') # Preprocess the image if resolution is None: resolution_div_by_32 = [int(int(reso)//32*32) for reso in image.size] if resolution_div_by_32 != resolution: resolution = resolution_div_by_32 image_preprocessor = ImagePreprocessor(resolution=tuple(resolution)) image_proc = image_preprocessor.proc(image) image_proc = image_proc.unsqueeze(0) # Prediction with torch.no_grad(): preds = birefnet(image_proc.to(device).half())[-1].sigmoid().cpu() pred = preds[0].squeeze() # Show Results pred_pil = transforms.ToPILImage()(pred) image_masked = refine_foreground(image, pred_pil, device=device) image_masked.putalpha(pred_pil.resize(image.size)) torch.cuda.empty_cache() if tab_is_batch: save_file_path = os.path.join(save_dir, "{}.png".format(os.path.splitext(os.path.basename(image_src))[0])) image_masked.save(save_file_path) save_paths.append(save_file_path) if tab_is_batch: zip_file_path = os.path.join(save_dir, "{}.zip".format(save_dir)) with zipfile.ZipFile(zip_file_path, 'w') as zipf: for file in save_paths: zipf.write(file, os.path.basename(file)) return save_paths, zip_file_path else: return (image_masked, image_ori) examples = [[_] for _ in glob('examples/*')][:] # Add the option of resolution in a text box. for idx_example, example in enumerate(examples): if 'My_' in example[0]: example_resolution = '2048x2048' else: example_resolution = '1024x1024' examples[idx_example] = examples[idx_example] + [example_resolution, 'General'] examples_url = [ ['https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg'], ] for idx_example_url, example_url in enumerate(examples_url): examples_url[idx_example_url].append('1024x1024') descriptions = ('Upload a picture, our model will extract a highly accurate segmentation of the subject in it.\n)' ' The resolution used in our training was `1024x1024`, which is the suggested resolution to obtain good results! `2048x2048` is suggested for BiRefNet_HR.\n' ' Our codes can be found at https://github.com/ZhengPeng7/BiRefNet.\n' ' We also maintain the HF model of BiRefNet at https://huggingface.co/ZhengPeng7/BiRefNet for easier access.') tab_image = gr.Interface( fn=predict, inputs=[ gr.Image(label='Upload an image'), gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`.", label="Resolution"), gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.") ], outputs=gr.ImageSlider(label="BiRefNet's prediction", type="pil", format='png'), examples=examples, api_name="image", description=descriptions, ) tab_text = gr.Interface( fn=predict, inputs=[ gr.Textbox(label="Paste an image URL"), gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`.", label="Resolution"), gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.") ], outputs=gr.ImageSlider(label="BiRefNet's prediction", type="pil", format='png'), examples=examples_url, api_name="URL", description=descriptions+'\nTab-URL is partially modified from https://huggingface.co/spaces/not-lain/background-removal, thanks to this great work!', ) tab_batch = gr.Interface( fn=predict, inputs=[ gr.File(label="Upload multiple images", type="filepath", file_count="multiple"), gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`.", label="Resolution"), gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.") ], outputs=[gr.Gallery(label="BiRefNet's predictions"), gr.File(label="Download masked images.")], api_name="batch", description=descriptions+'\nTab-batch is partially modified from https://huggingface.co/spaces/NegiTurkey/Multi_Birefnetfor_Background_Removal, thanks to this great work!', ) demo = gr.TabbedInterface( [tab_image, tab_text, tab_batch], ['image', 'URL', 'batch'], title="Official Online Demo of BiRefNet", ) if __name__ == "__main__": demo.launch(debug=True, shared=True)