Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import cv2 | |
import numpy as np | |
import torch | |
import gradio as gr | |
# import spaces | |
from glob import glob | |
from typing import Tuple | |
from PIL import Image | |
# from gradio_imageslider import ImageSlider | |
import transformers | |
import torch | |
from torchvision import transforms | |
import requests | |
from io import BytesIO | |
import zipfile | |
torch.set_float32_matmul_precision('high') | |
# torch.jit.script = lambda f: f | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
## CPU version refinement | |
def FB_blur_fusion_foreground_estimator_cpu(image, FG, B, alpha, r=90): | |
if isinstance(image, Image.Image): | |
image = np.array(image) / 255.0 | |
blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None] | |
blurred_FGA = cv2.blur(FG * alpha, (r, r)) | |
blurred_FG = blurred_FGA / (blurred_alpha + 1e-5) | |
blurred_B1A = cv2.blur(B * (1 - alpha), (r, r)) | |
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5) | |
FG = blurred_FG + alpha * (image - alpha * blurred_FG - (1 - alpha) * blurred_B) | |
FG = np.clip(FG, 0, 1) | |
return FG, blurred_B | |
def FB_blur_fusion_foreground_estimator_cpu_2(image, alpha, r=90): | |
# Thanks to the source: https://github.com/Photoroom/fast-foreground-estimation | |
alpha = alpha[:, :, None] | |
FG, blur_B = FB_blur_fusion_foreground_estimator_cpu(image, image, image, alpha, r) | |
return FB_blur_fusion_foreground_estimator_cpu(image, FG, blur_B, alpha, r=6)[0] | |
## GPU version refinement | |
def mean_blur(x, kernel_size): | |
""" | |
equivalent to cv.blur | |
x: [B, C, H, W] | |
""" | |
if kernel_size % 2 == 0: | |
pad_l = kernel_size // 2 - 1 | |
pad_r = kernel_size // 2 | |
pad_t = kernel_size // 2 - 1 | |
pad_b = kernel_size // 2 | |
else: | |
pad_l = pad_r = pad_t = pad_b = kernel_size // 2 | |
x_padded = torch.nn.functional.pad(x, (pad_l, pad_r, pad_t, pad_b), mode='replicate') | |
return torch.nn.functional.avg_pool2d(x_padded, kernel_size=(kernel_size, kernel_size), stride=1, count_include_pad=False) | |
def FB_blur_fusion_foreground_estimator_gpu(image, FG, B, alpha, r=90): | |
as_dtype = lambda x, dtype: x.to(dtype) if x.dtype != dtype else x | |
input_dtype = image.dtype | |
# convert image to float to avoid overflow | |
image = as_dtype(image, torch.float32) | |
FG = as_dtype(FG, torch.float32) | |
B = as_dtype(B, torch.float32) | |
alpha = as_dtype(alpha, torch.float32) | |
blurred_alpha = mean_blur(alpha, kernel_size=r) | |
blurred_FGA = mean_blur(FG * alpha, kernel_size=r) | |
blurred_FG = blurred_FGA / (blurred_alpha + 1e-5) | |
blurred_B1A = mean_blur(B * (1 - alpha), kernel_size=r) | |
blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5) | |
FG_output = blurred_FG + alpha * (image - alpha * blurred_FG - (1 - alpha) * blurred_B) | |
FG_output = torch.clamp(FG_output, 0, 1) | |
return as_dtype(FG_output, input_dtype), as_dtype(blurred_B, input_dtype) | |
def FB_blur_fusion_foreground_estimator_gpu_2(image, alpha, r=90): | |
# Thanks to the source: https://github.com/ZhengPeng7/BiRefNet/issues/226#issuecomment-3016433728 | |
FG, blur_B = FB_blur_fusion_foreground_estimator_gpu(image, image, image, alpha, r) | |
return FB_blur_fusion_foreground_estimator_gpu(image, FG, blur_B, alpha, r=6)[0] | |
def refine_foreground(image, mask, r=90, device='cuda'): | |
"""both image and mask are in range of [0, 1]""" | |
if mask.size != image.size: | |
mask = mask.resize(image.size) | |
if device == 'cuda': | |
image = transforms.functional.to_tensor(image).float().cuda() | |
mask = transforms.functional.to_tensor(mask).float().cuda() | |
image = image.unsqueeze(0) | |
mask = mask.unsqueeze(0) | |
estimated_foreground = FB_blur_fusion_foreground_estimator_gpu_2(image, mask, r=r) | |
estimated_foreground = estimated_foreground.squeeze() | |
estimated_foreground = (estimated_foreground.mul(255.0)).to(torch.uint8) | |
estimated_foreground = estimated_foreground.permute(1, 2, 0).contiguous().cpu().numpy().astype(np.uint8) | |
else: | |
image = np.array(image, dtype=np.float32) / 255.0 | |
mask = np.array(mask, dtype=np.float32) / 255.0 | |
estimated_foreground = FB_blur_fusion_foreground_estimator_cpu_2(image, mask, r=r) | |
estimated_foreground = (estimated_foreground * 255.0).astype(np.uint8) | |
estimated_foreground = Image.fromarray(np.ascontiguousarray(estimated_foreground)) | |
return estimated_foreground | |
class ImagePreprocessor(): | |
def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None: | |
# Input resolution is on WxH. | |
self.transform_image = transforms.Compose([ | |
transforms.Resize(resolution[::-1]), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
]) | |
def proc(self, image: Image.Image) -> torch.Tensor: | |
image = self.transform_image(image) | |
return image | |
usage_to_weights_file = { | |
'General': 'BiRefNet', | |
'General-HR': 'BiRefNet_HR', | |
'Matting-HR': 'BiRefNet_HR-matting', | |
'Matting': 'BiRefNet-matting', | |
'Portrait': 'BiRefNet-portrait', | |
'General-reso_512': 'BiRefNet_512x512', | |
'General-Lite': 'BiRefNet_lite', | |
'General-Lite-2K': 'BiRefNet_lite-2K', | |
'Anime-Lite': 'BiRefNet_lite-Anime', | |
'DIS': 'BiRefNet-DIS5K', | |
'HRSOD': 'BiRefNet-HRSOD', | |
'COD': 'BiRefNet-COD', | |
'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs', | |
'General-legacy': 'BiRefNet-legacy', | |
'General-dynamic': 'BiRefNet_dynamic', | |
} | |
birefnet = transformers.AutoModelForImageSegmentation.from_pretrained('/'.join(('zhengpeng7', usage_to_weights_file['General'])), trust_remote_code=True) | |
birefnet.to(device) | |
birefnet.eval(); birefnet.half() | |
# @spaces.GPU | |
def predict(images, resolution, weights_file): | |
assert (images is not None), 'AssertionError: images cannot be None.' | |
global birefnet | |
# Load BiRefNet with chosen weights | |
_weights_file = '/'.join(('zhengpeng7', usage_to_weights_file[weights_file] if weights_file is not None else usage_to_weights_file['General'])) | |
print('Using weights: {}.'.format(_weights_file)) | |
birefnet = transformers.AutoModelForImageSegmentation.from_pretrained(_weights_file, trust_remote_code=True) | |
birefnet.to(device) | |
birefnet.eval(); birefnet.half() | |
try: | |
resolution = [int(int(reso)//32*32) for reso in resolution.strip().split('x')] | |
except: | |
if weights_file in ['General-HR', 'Matting-HR']: | |
resolution = (2048, 2048) | |
elif weights_file in ['General-Lite-2K']: | |
resolution = (2560, 1440) | |
elif weights_file in ['General-reso_512']: | |
resolution = (512, 512) | |
else: | |
if weights_file in ['General-dynamic']: | |
resolution = None | |
print('Using the original size (div by 32) for inference.') | |
else: | |
resolution = (1024, 1024) | |
print('Invalid resolution input. Automatically changed to 1024x1024 / 2048x2048 / 2560x1440.') | |
if isinstance(images, list): | |
# For tab_batch | |
save_paths = [] | |
save_dir = 'preds-BiRefNet' | |
if not os.path.exists(save_dir): | |
os.makedirs(save_dir) | |
tab_is_batch = True | |
else: | |
images = [images] | |
tab_is_batch = False | |
for idx_image, image_src in enumerate(images): | |
if isinstance(image_src, str): | |
if os.path.isfile(image_src): | |
image_ori = Image.open(image_src) | |
else: | |
response = requests.get(image_src) | |
image_data = BytesIO(response.content) | |
image_ori = Image.open(image_data) | |
else: | |
image_ori = Image.fromarray(image_src) | |
image = image_ori.convert('RGB') | |
# Preprocess the image | |
if resolution is None: | |
resolution_div_by_32 = [int(int(reso)//32*32) for reso in image.size] | |
if resolution_div_by_32 != resolution: | |
resolution = resolution_div_by_32 | |
image_preprocessor = ImagePreprocessor(resolution=tuple(resolution)) | |
image_proc = image_preprocessor.proc(image) | |
image_proc = image_proc.unsqueeze(0) | |
# Prediction | |
with torch.no_grad(): | |
preds = birefnet(image_proc.to(device).half())[-1].sigmoid().cpu() | |
pred = preds[0].squeeze() | |
# Show Results | |
pred_pil = transforms.ToPILImage()(pred) | |
image_masked = refine_foreground(image, pred_pil, device=device) | |
image_masked.putalpha(pred_pil.resize(image.size)) | |
torch.cuda.empty_cache() | |
if tab_is_batch: | |
save_file_path = os.path.join(save_dir, "{}.png".format(os.path.splitext(os.path.basename(image_src))[0])) | |
image_masked.save(save_file_path) | |
save_paths.append(save_file_path) | |
if tab_is_batch: | |
zip_file_path = os.path.join(save_dir, "{}.zip".format(save_dir)) | |
with zipfile.ZipFile(zip_file_path, 'w') as zipf: | |
for file in save_paths: | |
zipf.write(file, os.path.basename(file)) | |
return save_paths, zip_file_path | |
else: | |
return (image_masked, image_ori) | |
examples = [[_] for _ in glob('examples/*')][:] | |
# Add the option of resolution in a text box. | |
for idx_example, example in enumerate(examples): | |
if 'My_' in example[0]: | |
example_resolution = '2048x2048' | |
model_choice = 'Matting-HR' | |
else: | |
example_resolution = '1024x1024' | |
model_choice = 'General' | |
examples[idx_example] = examples[idx_example] + [example_resolution, model_choice] | |
examples_url = [ | |
['https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg'], | |
] | |
for idx_example_url, example_url in enumerate(examples_url): | |
examples_url[idx_example_url] = examples_url[idx_example_url] + ['1024x1024', 'General'] | |
descriptions = ('Upload a picture, our model will extract a highly accurate segmentation of the subject in it.\n)' | |
' The resolution used in our training was `1024x1024`, which is the suggested resolution to obtain good results! `2048x2048` is suggested for BiRefNet_HR.\n' | |
' Our codes can be found at https://github.com/ZhengPeng7/BiRefNet.\n' | |
' We also maintain the HF model of BiRefNet at https://huggingface.co/ZhengPeng7/BiRefNet for easier access.') | |
tab_image = gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.Image(label='Upload an image'), | |
gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`.", label="Resolution"), | |
gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.") | |
], | |
outputs=gr.ImageSlider(label="BiRefNet's prediction", type="pil", format='png'), | |
examples=examples, | |
api_name="image", | |
description=descriptions, | |
) | |
tab_text = gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.Textbox(label="Paste an image URL"), | |
gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`.", label="Resolution"), | |
gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.") | |
], | |
outputs=gr.ImageSlider(label="BiRefNet's prediction", type="pil", format='png'), | |
examples=examples_url, | |
api_name="URL", | |
description=descriptions+'\nTab-URL is partially modified from https://huggingface.co/spaces/not-lain/background-removal, thanks to this great work!', | |
) | |
tab_batch = gr.Interface( | |
fn=predict, | |
inputs=[ | |
gr.File(label="Upload multiple images", type="filepath", file_count="multiple"), | |
gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `1024x1024`.", label="Resolution"), | |
gr.Radio(list(usage_to_weights_file.keys()), value='General', label="Weights", info="Choose the weights you want.") | |
], | |
outputs=[gr.Gallery(label="BiRefNet's predictions"), gr.File(label="Download masked images.")], | |
api_name="batch", | |
description=descriptions+'\nTab-batch is partially modified from https://huggingface.co/spaces/NegiTurkey/Multi_Birefnetfor_Background_Removal, thanks to this great work!', | |
) | |
demo = gr.TabbedInterface( | |
[tab_image, tab_text, tab_batch], | |
['image', 'URL', 'batch'], | |
title="Official Online Demo of BiRefNet", | |
) | |
if __name__ == "__main__": | |
demo.launch(debug=True) | |