# Copyright (c) Facebook, Inc. and its affiliates. import importlib import numpy as np import os import re import subprocess import sys from collections import defaultdict import PIL import torch import torchvision from tabulate import tabulate __all__ = ["collect_env_info"] def collect_torch_env(): try: import torch.__config__ return torch.__config__.show() except ImportError: # compatible with older versions of pytorch from torch.utils.collect_env import get_pretty_env_info return get_pretty_env_info() def get_env_module(): var_name = "DETECTRON2_ENV_MODULE" return var_name, os.environ.get(var_name, "") def detect_compute_compatibility(CUDA_HOME, so_file): try: cuobjdump = os.path.join(CUDA_HOME, "bin", "cuobjdump") if os.path.isfile(cuobjdump): output = subprocess.check_output( "'{}' --list-elf '{}'".format(cuobjdump, so_file), shell=True ) output = output.decode("utf-8").strip().split("\n") arch = [] for line in output: line = re.findall(r"\.sm_([0-9]*)\.", line)[0] arch.append(".".join(line)) arch = sorted(set(arch)) return ", ".join(arch) else: return so_file + "; cannot find cuobjdump" except Exception: # unhandled failure return so_file def collect_env_info(): has_gpu = torch.cuda.is_available() # true for both CUDA & ROCM torch_version = torch.__version__ # NOTE: the use of CUDA_HOME and ROCM_HOME requires the CUDA/ROCM build deps, though in # theory detectron2 should be made runnable with only the corresponding runtimes from torch.utils.cpp_extension import CUDA_HOME has_rocm = False if tuple(map(int, torch_version.split(".")[:2])) >= (1, 5): from torch.utils.cpp_extension import ROCM_HOME if (getattr(torch.version, "hip", None) is not None) and (ROCM_HOME is not None): has_rocm = True has_cuda = has_gpu and (not has_rocm) data = [] data.append(("sys.platform", sys.platform)) data.append(("Python", sys.version.replace("\n", ""))) data.append(("numpy", np.__version__)) try: import detectron2 # noqa data.append( ("detectron2", detectron2.__version__ + " @" + os.path.dirname(detectron2.__file__)) ) except ImportError: data.append(("detectron2", "failed to import")) try: import detectron2._C as _C except ImportError as e: data.append(("detectron2._C", f"not built correctly: {e}")) # print system compilers when extension fails to build if sys.platform != "win32": # don't know what to do for windows try: # this is how torch/utils/cpp_extensions.py choose compiler cxx = os.environ.get("CXX", "c++") cxx = subprocess.check_output("'{}' --version".format(cxx), shell=True) cxx = cxx.decode("utf-8").strip().split("\n")[0] except subprocess.SubprocessError: cxx = "Not found" data.append(("Compiler", cxx)) if has_cuda and CUDA_HOME is not None: try: nvcc = os.path.join(CUDA_HOME, "bin", "nvcc") nvcc = subprocess.check_output("'{}' -V".format(nvcc), shell=True) nvcc = nvcc.decode("utf-8").strip().split("\n")[-1] except subprocess.SubprocessError: nvcc = "Not found" data.append(("CUDA compiler", nvcc)) else: # print compilers that are used to build extension data.append(("Compiler", _C.get_compiler_version())) data.append(("CUDA compiler", _C.get_cuda_version())) # cuda or hip if has_cuda: data.append( ("detectron2 arch flags", detect_compute_compatibility(CUDA_HOME, _C.__file__)) ) data.append(get_env_module()) data.append(("PyTorch", torch_version + " @" + os.path.dirname(torch.__file__))) data.append(("PyTorch debug build", torch.version.debug)) data.append(("GPU available", has_gpu)) if has_gpu: devices = defaultdict(list) for k in range(torch.cuda.device_count()): cap = ".".join((str(x) for x in torch.cuda.get_device_capability(k))) name = torch.cuda.get_device_name(k) + f" (arch={cap})" devices[name].append(str(k)) for name, devids in devices.items(): data.append(("GPU " + ",".join(devids), name)) if has_rocm: msg = " - invalid!" if not os.path.isdir(ROCM_HOME) else "" data.append(("ROCM_HOME", str(ROCM_HOME) + msg)) else: msg = " - invalid!" if not os.path.isdir(CUDA_HOME) else "" data.append(("CUDA_HOME", str(CUDA_HOME) + msg)) cuda_arch_list = os.environ.get("TORCH_CUDA_ARCH_LIST", None) if cuda_arch_list: data.append(("TORCH_CUDA_ARCH_LIST", cuda_arch_list)) data.append(("Pillow", PIL.__version__)) try: data.append( ( "torchvision", str(torchvision.__version__) + " @" + os.path.dirname(torchvision.__file__), ) ) if has_cuda: try: torchvision_C = importlib.util.find_spec("torchvision._C").origin msg = detect_compute_compatibility(CUDA_HOME, torchvision_C) data.append(("torchvision arch flags", msg)) except ImportError: data.append(("torchvision._C", "Not found")) except AttributeError: data.append(("torchvision", "unknown")) try: import fvcore data.append(("fvcore", fvcore.__version__)) except ImportError: pass try: import cv2 data.append(("cv2", cv2.__version__)) except ImportError: data.append(("cv2", "Not found")) env_str = tabulate(data) + "\n" env_str += collect_torch_env() return env_str if __name__ == "__main__": try: import detectron2 # noqa except ImportError: print(collect_env_info()) else: from detectron2.utils.collect_env import collect_env_info print(collect_env_info()) if torch.cuda.is_available(): for k in range(torch.cuda.device_count()): device = f"cuda:{k}" try: x = torch.tensor([1, 2.0], dtype=torch.float32) x = x.to(device) except Exception: print(f"Unable to copy tensor to device={device}")