# Copyright (c) Facebook, Inc. and its affiliates. """ Wrappers around on some nn functions, mainly to support empty tensors. Ideally, add support directly in PyTorch to empty tensors in those functions. These can be removed once https://github.com/pytorch/pytorch/issues/12013 is implemented """ from typing import List import torch from torch.nn import functional as F from detectron2.utils.env import TORCH_VERSION def cat(tensors: List[torch.Tensor], dim: int = 0): """ Efficient version of torch.cat that avoids a copy if there is only a single element in a list """ assert isinstance(tensors, (list, tuple)) if len(tensors) == 1: return tensors[0] return torch.cat(tensors, dim) class _NewEmptyTensorOp(torch.autograd.Function): @staticmethod def forward(ctx, x, new_shape): ctx.shape = x.shape return x.new_empty(new_shape) @staticmethod def backward(ctx, grad): shape = ctx.shape return _NewEmptyTensorOp.apply(grad, shape), None class Conv2d(torch.nn.Conv2d): """ A wrapper around :class:`torch.nn.Conv2d` to support empty inputs and more features. """ def __init__(self, *args, **kwargs): """ Extra keyword arguments supported in addition to those in `torch.nn.Conv2d`: Args: norm (nn.Module, optional): a normalization layer activation (callable(Tensor) -> Tensor): a callable activation function It assumes that norm layer is used before activation. """ norm = kwargs.pop("norm", None) activation = kwargs.pop("activation", None) super().__init__(*args, **kwargs) self.norm = norm self.activation = activation def forward(self, x): # torchscript does not support SyncBatchNorm yet # https://github.com/pytorch/pytorch/issues/40507 # and we skip these codes in torchscript since: # 1. currently we only support torchscript in evaluation mode # 2. features needed by exporting module to torchscript are added in PyTorch 1.6 or # later version, `Conv2d` in these PyTorch versions has already supported empty inputs. if not torch.jit.is_scripting(): if x.numel() == 0 and self.training: # https://github.com/pytorch/pytorch/issues/12013 assert not isinstance( self.norm, torch.nn.SyncBatchNorm ), "SyncBatchNorm does not support empty inputs!" x = F.conv2d( x, self.weight, self.bias, self.stride, self.padding, self.dilation, self.groups ) if self.norm is not None: x = self.norm(x) if self.activation is not None: x = self.activation(x) return x ConvTranspose2d = torch.nn.ConvTranspose2d BatchNorm2d = torch.nn.BatchNorm2d interpolate = F.interpolate if TORCH_VERSION > (1, 5): Linear = torch.nn.Linear else: class Linear(torch.nn.Linear): """ A wrapper around :class:`torch.nn.Linear` to support empty inputs and more features. Because of https://github.com/pytorch/pytorch/issues/34202 """ def forward(self, x): if x.numel() == 0: output_shape = [x.shape[0], self.weight.shape[0]] empty = _NewEmptyTensorOp.apply(x, output_shape) if self.training: # This is to make DDP happy. # DDP expects all workers to have gradient w.r.t the same set of parameters. _dummy = sum(x.view(-1)[0] for x in self.parameters()) * 0.0 return empty + _dummy else: return empty x = super().forward(x) return x def nonzero_tuple(x): """ A 'as_tuple=True' version of torch.nonzero to support torchscript. because of https://github.com/pytorch/pytorch/issues/38718 """ if torch.jit.is_scripting(): if x.dim() == 0: return x.unsqueeze(0).nonzero().unbind(1) return x.nonzero().unbind(1) else: return x.nonzero(as_tuple=True)