# Copyright (c) Facebook, Inc. and its affiliates. from torch import nn from torchvision.ops import roi_align as tv_roi_align try: from torchvision import __version__ version = tuple(int(x) for x in __version__.split(".")[:2]) USE_TORCHVISION = version >= (0, 7) # https://github.com/pytorch/vision/pull/2438 except ImportError: # only open source torchvision has __version__ USE_TORCHVISION = True if USE_TORCHVISION: roi_align = tv_roi_align else: from torch.nn.modules.utils import _pair from torch.autograd import Function from torch.autograd.function import once_differentiable from detectron2 import _C class _ROIAlign(Function): @staticmethod def forward(ctx, input, roi, output_size, spatial_scale, sampling_ratio, aligned): ctx.save_for_backward(roi) ctx.output_size = _pair(output_size) ctx.spatial_scale = spatial_scale ctx.sampling_ratio = sampling_ratio ctx.input_shape = input.size() ctx.aligned = aligned output = _C.roi_align_forward( input, roi, spatial_scale, output_size[0], output_size[1], sampling_ratio, aligned ) return output @staticmethod @once_differentiable def backward(ctx, grad_output): (rois,) = ctx.saved_tensors output_size = ctx.output_size spatial_scale = ctx.spatial_scale sampling_ratio = ctx.sampling_ratio bs, ch, h, w = ctx.input_shape grad_input = _C.roi_align_backward( grad_output, rois, spatial_scale, output_size[0], output_size[1], bs, ch, h, w, sampling_ratio, ctx.aligned, ) return grad_input, None, None, None, None, None roi_align = _ROIAlign.apply # NOTE: torchvision's RoIAlign has a different default aligned=False class ROIAlign(nn.Module): def __init__(self, output_size, spatial_scale, sampling_ratio, aligned=True): """ Args: output_size (tuple): h, w spatial_scale (float): scale the input boxes by this number sampling_ratio (int): number of inputs samples to take for each output sample. 0 to take samples densely. aligned (bool): if False, use the legacy implementation in Detectron. If True, align the results more perfectly. Note: The meaning of aligned=True: Given a continuous coordinate c, its two neighboring pixel indices (in our pixel model) are computed by floor(c - 0.5) and ceil(c - 0.5). For example, c=1.3 has pixel neighbors with discrete indices [0] and [1] (which are sampled from the underlying signal at continuous coordinates 0.5 and 1.5). But the original roi_align (aligned=False) does not subtract the 0.5 when computing neighboring pixel indices and therefore it uses pixels with a slightly incorrect alignment (relative to our pixel model) when performing bilinear interpolation. With `aligned=True`, we first appropriately scale the ROI and then shift it by -0.5 prior to calling roi_align. This produces the correct neighbors; see detectron2/tests/test_roi_align.py for verification. The difference does not make a difference to the model's performance if ROIAlign is used together with conv layers. """ super(ROIAlign, self).__init__() self.output_size = output_size self.spatial_scale = spatial_scale self.sampling_ratio = sampling_ratio self.aligned = aligned def forward(self, input, rois): """ Args: input: NCHW images rois: Bx5 boxes. First column is the index into N. The other 4 columns are xyxy. """ assert rois.dim() == 2 and rois.size(1) == 5 return roi_align( input, rois.to(dtype=input.dtype), self.output_size, self.spatial_scale, self.sampling_ratio, self.aligned, ) def __repr__(self): tmpstr = self.__class__.__name__ + "(" tmpstr += "output_size=" + str(self.output_size) tmpstr += ", spatial_scale=" + str(self.spatial_scale) tmpstr += ", sampling_ratio=" + str(self.sampling_ratio) tmpstr += ", aligned=" + str(self.aligned) tmpstr += ")" return tmpstr