Spaces:
No application file
No application file
// Copyright (c) Facebook, Inc. and its affiliates. | |
namespace { | |
// implementation taken from Caffe2 | |
template <typename T> | |
struct PreCalc { | |
int pos1; | |
int pos2; | |
int pos3; | |
int pos4; | |
T w1; | |
T w2; | |
T w3; | |
T w4; | |
}; | |
template <typename T> | |
void pre_calc_for_bilinear_interpolate( | |
const int height, | |
const int width, | |
const int pooled_height, | |
const int pooled_width, | |
const int iy_upper, | |
const int ix_upper, | |
T roi_start_h, | |
T roi_start_w, | |
T bin_size_h, | |
T bin_size_w, | |
int roi_bin_grid_h, | |
int roi_bin_grid_w, | |
std::vector<PreCalc<T>>& pre_calc) { | |
int pre_calc_index = 0; | |
for (int ph = 0; ph < pooled_height; ph++) { | |
for (int pw = 0; pw < pooled_width; pw++) { | |
for (int iy = 0; iy < iy_upper; iy++) { | |
const T yy = roi_start_h + ph * bin_size_h + | |
static_cast<T>(iy + .5f) * bin_size_h / | |
static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5 | |
for (int ix = 0; ix < ix_upper; ix++) { | |
const T xx = roi_start_w + pw * bin_size_w + | |
static_cast<T>(ix + .5f) * bin_size_w / | |
static_cast<T>(roi_bin_grid_w); | |
T x = xx; | |
T y = yy; | |
// deal with: inverse elements are out of feature map boundary | |
if (y < -1.0 || y > height || x < -1.0 || x > width) { | |
// empty | |
PreCalc<T> pc; | |
pc.pos1 = 0; | |
pc.pos2 = 0; | |
pc.pos3 = 0; | |
pc.pos4 = 0; | |
pc.w1 = 0; | |
pc.w2 = 0; | |
pc.w3 = 0; | |
pc.w4 = 0; | |
pre_calc[pre_calc_index] = pc; | |
pre_calc_index += 1; | |
continue; | |
} | |
if (y <= 0) { | |
y = 0; | |
} | |
if (x <= 0) { | |
x = 0; | |
} | |
int y_low = (int)y; | |
int x_low = (int)x; | |
int y_high; | |
int x_high; | |
if (y_low >= height - 1) { | |
y_high = y_low = height - 1; | |
y = (T)y_low; | |
} else { | |
y_high = y_low + 1; | |
} | |
if (x_low >= width - 1) { | |
x_high = x_low = width - 1; | |
x = (T)x_low; | |
} else { | |
x_high = x_low + 1; | |
} | |
T ly = y - y_low; | |
T lx = x - x_low; | |
T hy = 1. - ly, hx = 1. - lx; | |
T w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx; | |
// save weights and indices | |
PreCalc<T> pc; | |
pc.pos1 = y_low * width + x_low; | |
pc.pos2 = y_low * width + x_high; | |
pc.pos3 = y_high * width + x_low; | |
pc.pos4 = y_high * width + x_high; | |
pc.w1 = w1; | |
pc.w2 = w2; | |
pc.w3 = w3; | |
pc.w4 = w4; | |
pre_calc[pre_calc_index] = pc; | |
pre_calc_index += 1; | |
} | |
} | |
} | |
} | |
} | |
template <typename T> | |
void ROIAlignForward( | |
const int nthreads, | |
const T* input, | |
const T& spatial_scale, | |
const int channels, | |
const int height, | |
const int width, | |
const int pooled_height, | |
const int pooled_width, | |
const int sampling_ratio, | |
const T* rois, | |
T* output, | |
bool aligned) { | |
int n_rois = nthreads / channels / pooled_width / pooled_height; | |
// (n, c, ph, pw) is an element in the pooled output | |
// can be parallelized using omp | |
// #pragma omp parallel for num_threads(32) | |
for (int n = 0; n < n_rois; n++) { | |
int index_n = n * channels * pooled_width * pooled_height; | |
const T* offset_rois = rois + n * 5; | |
int roi_batch_ind = offset_rois[0]; | |
// Do not use rounding; this implementation detail is critical | |
T offset = aligned ? (T)0.5 : (T)0.0; | |
T roi_start_w = offset_rois[1] * spatial_scale - offset; | |
T roi_start_h = offset_rois[2] * spatial_scale - offset; | |
T roi_end_w = offset_rois[3] * spatial_scale - offset; | |
T roi_end_h = offset_rois[4] * spatial_scale - offset; | |
T roi_width = roi_end_w - roi_start_w; | |
T roi_height = roi_end_h - roi_start_h; | |
if (aligned) { | |
AT_ASSERTM( | |
roi_width >= 0 && roi_height >= 0, | |
"ROIs in ROIAlign cannot have non-negative size!"); | |
} else { // for backward-compatibility only | |
roi_width = std::max(roi_width, (T)1.); | |
roi_height = std::max(roi_height, (T)1.); | |
} | |
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height); | |
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width); | |
// We use roi_bin_grid to sample the grid and mimic integral | |
int roi_bin_grid_h = (sampling_ratio > 0) | |
? sampling_ratio | |
: ceil(roi_height / pooled_height); // e.g., = 2 | |
int roi_bin_grid_w = | |
(sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width); | |
// We do average (integral) pooling inside a bin | |
// When the grid is empty, output zeros == 0/1, instead of NaN. | |
const T count = std::max(roi_bin_grid_h * roi_bin_grid_w, 1); // e.g. = 4 | |
// we want to precalculate indices and weights shared by all channels, | |
// this is the key point of optimization | |
std::vector<PreCalc<T>> pre_calc( | |
roi_bin_grid_h * roi_bin_grid_w * pooled_width * pooled_height); | |
pre_calc_for_bilinear_interpolate( | |
height, | |
width, | |
pooled_height, | |
pooled_width, | |
roi_bin_grid_h, | |
roi_bin_grid_w, | |
roi_start_h, | |
roi_start_w, | |
bin_size_h, | |
bin_size_w, | |
roi_bin_grid_h, | |
roi_bin_grid_w, | |
pre_calc); | |
for (int c = 0; c < channels; c++) { | |
int index_n_c = index_n + c * pooled_width * pooled_height; | |
const T* offset_input = | |
input + (roi_batch_ind * channels + c) * height * width; | |
int pre_calc_index = 0; | |
for (int ph = 0; ph < pooled_height; ph++) { | |
for (int pw = 0; pw < pooled_width; pw++) { | |
int index = index_n_c + ph * pooled_width + pw; | |
T output_val = 0.; | |
for (int iy = 0; iy < roi_bin_grid_h; iy++) { | |
for (int ix = 0; ix < roi_bin_grid_w; ix++) { | |
PreCalc<T> pc = pre_calc[pre_calc_index]; | |
output_val += pc.w1 * offset_input[pc.pos1] + | |
pc.w2 * offset_input[pc.pos2] + | |
pc.w3 * offset_input[pc.pos3] + pc.w4 * offset_input[pc.pos4]; | |
pre_calc_index += 1; | |
} | |
} | |
output_val /= count; | |
output[index] = output_val; | |
} // for pw | |
} // for ph | |
} // for c | |
} // for n | |
} | |
template <typename T> | |
void bilinear_interpolate_gradient( | |
const int height, | |
const int width, | |
T y, | |
T x, | |
T& w1, | |
T& w2, | |
T& w3, | |
T& w4, | |
int& x_low, | |
int& x_high, | |
int& y_low, | |
int& y_high, | |
const int index /* index for debug only*/) { | |
// deal with cases that inverse elements are out of feature map boundary | |
if (y < -1.0 || y > height || x < -1.0 || x > width) { | |
// empty | |
w1 = w2 = w3 = w4 = 0.; | |
x_low = x_high = y_low = y_high = -1; | |
return; | |
} | |
if (y <= 0) | |
y = 0; | |
if (x <= 0) | |
x = 0; | |
y_low = (int)y; | |
x_low = (int)x; | |
if (y_low >= height - 1) { | |
y_high = y_low = height - 1; | |
y = (T)y_low; | |
} else { | |
y_high = y_low + 1; | |
} | |
if (x_low >= width - 1) { | |
x_high = x_low = width - 1; | |
x = (T)x_low; | |
} else { | |
x_high = x_low + 1; | |
} | |
T ly = y - y_low; | |
T lx = x - x_low; | |
T hy = 1. - ly, hx = 1. - lx; | |
// reference in forward | |
// T v1 = input[y_low * width + x_low]; | |
// T v2 = input[y_low * width + x_high]; | |
// T v3 = input[y_high * width + x_low]; | |
// T v4 = input[y_high * width + x_high]; | |
// T val = (w1 * v1 + w2 * v2 + w3 * v3 + w4 * v4); | |
w1 = hy * hx, w2 = hy * lx, w3 = ly * hx, w4 = ly * lx; | |
return; | |
} | |
template <class T> | |
inline void add(T* address, const T& val) { | |
*address += val; | |
} | |
template <typename T> | |
void ROIAlignBackward( | |
const int nthreads, | |
// may not be contiguous, and should be indexed using n_stride, etc | |
const T* grad_output, | |
const T& spatial_scale, | |
const int channels, | |
const int height, | |
const int width, | |
const int pooled_height, | |
const int pooled_width, | |
const int sampling_ratio, | |
T* grad_input, | |
const T* rois, | |
const int n_stride, | |
const int c_stride, | |
const int h_stride, | |
const int w_stride, | |
bool aligned) { | |
for (int index = 0; index < nthreads; index++) { | |
// (n, c, ph, pw) is an element in the pooled output | |
int pw = index % pooled_width; | |
int ph = (index / pooled_width) % pooled_height; | |
int c = (index / pooled_width / pooled_height) % channels; | |
int n = index / pooled_width / pooled_height / channels; | |
const T* offset_rois = rois + n * 5; | |
int roi_batch_ind = offset_rois[0]; | |
// Do not use rounding; this implementation detail is critical | |
T offset = aligned ? (T)0.5 : (T)0.0; | |
T roi_start_w = offset_rois[1] * spatial_scale - offset; | |
T roi_start_h = offset_rois[2] * spatial_scale - offset; | |
T roi_end_w = offset_rois[3] * spatial_scale - offset; | |
T roi_end_h = offset_rois[4] * spatial_scale - offset; | |
T roi_width = roi_end_w - roi_start_w; | |
T roi_height = roi_end_h - roi_start_h; | |
if (aligned) { | |
AT_ASSERTM( | |
roi_width >= 0 && roi_height >= 0, | |
"ROIs in ROIAlign do not have non-negative size!"); | |
} else { // for backward-compatibility only | |
roi_width = std::max(roi_width, (T)1.); | |
roi_height = std::max(roi_height, (T)1.); | |
} | |
T bin_size_h = static_cast<T>(roi_height) / static_cast<T>(pooled_height); | |
T bin_size_w = static_cast<T>(roi_width) / static_cast<T>(pooled_width); | |
T* offset_grad_input = | |
grad_input + ((roi_batch_ind * channels + c) * height * width); | |
int output_offset = n * n_stride + c * c_stride; | |
const T* offset_grad_output = grad_output + output_offset; | |
const T grad_output_this_bin = | |
offset_grad_output[ph * h_stride + pw * w_stride]; | |
// We use roi_bin_grid to sample the grid and mimic integral | |
int roi_bin_grid_h = (sampling_ratio > 0) | |
? sampling_ratio | |
: ceil(roi_height / pooled_height); // e.g., = 2 | |
int roi_bin_grid_w = | |
(sampling_ratio > 0) ? sampling_ratio : ceil(roi_width / pooled_width); | |
// We do average (integral) pooling inside a bin | |
const T count = roi_bin_grid_h * roi_bin_grid_w; // e.g. = 4 | |
for (int iy = 0; iy < roi_bin_grid_h; iy++) { | |
const T y = roi_start_h + ph * bin_size_h + | |
static_cast<T>(iy + .5f) * bin_size_h / | |
static_cast<T>(roi_bin_grid_h); // e.g., 0.5, 1.5 | |
for (int ix = 0; ix < roi_bin_grid_w; ix++) { | |
const T x = roi_start_w + pw * bin_size_w + | |
static_cast<T>(ix + .5f) * bin_size_w / | |
static_cast<T>(roi_bin_grid_w); | |
T w1, w2, w3, w4; | |
int x_low, x_high, y_low, y_high; | |
bilinear_interpolate_gradient( | |
height, | |
width, | |
y, | |
x, | |
w1, | |
w2, | |
w3, | |
w4, | |
x_low, | |
x_high, | |
y_low, | |
y_high, | |
index); | |
T g1 = grad_output_this_bin * w1 / count; | |
T g2 = grad_output_this_bin * w2 / count; | |
T g3 = grad_output_this_bin * w3 / count; | |
T g4 = grad_output_this_bin * w4 / count; | |
if (x_low >= 0 && x_high >= 0 && y_low >= 0 && y_high >= 0) { | |
// atomic add is not needed for now since it is single threaded | |
add(offset_grad_input + y_low * width + x_low, static_cast<T>(g1)); | |
add(offset_grad_input + y_low * width + x_high, static_cast<T>(g2)); | |
add(offset_grad_input + y_high * width + x_low, static_cast<T>(g3)); | |
add(offset_grad_input + y_high * width + x_high, static_cast<T>(g4)); | |
} // if | |
} // ix | |
} // iy | |
} // for | |
} // ROIAlignBackward | |
} // namespace | |
namespace detectron2 { | |
at::Tensor ROIAlign_forward_cpu( | |
const at::Tensor& input, | |
const at::Tensor& rois, | |
const float spatial_scale, | |
const int pooled_height, | |
const int pooled_width, | |
const int sampling_ratio, | |
bool aligned) { | |
AT_ASSERTM(input.device().is_cpu(), "input must be a CPU tensor"); | |
AT_ASSERTM(rois.device().is_cpu(), "rois must be a CPU tensor"); | |
at::TensorArg input_t{input, "input", 1}, rois_t{rois, "rois", 2}; | |
at::CheckedFrom c = "ROIAlign_forward_cpu"; | |
at::checkAllSameType(c, {input_t, rois_t}); | |
auto num_rois = rois.size(0); | |
auto channels = input.size(1); | |
auto height = input.size(2); | |
auto width = input.size(3); | |
at::Tensor output = at::zeros( | |
{num_rois, channels, pooled_height, pooled_width}, input.options()); | |
auto output_size = num_rois * pooled_height * pooled_width * channels; | |
if (output.numel() == 0) | |
return output; | |
auto input_ = input.contiguous(), rois_ = rois.contiguous(); | |
AT_DISPATCH_FLOATING_TYPES_AND_HALF( | |
input.scalar_type(), "ROIAlign_forward", [&] { | |
ROIAlignForward<scalar_t>( | |
output_size, | |
input_.data_ptr<scalar_t>(), | |
spatial_scale, | |
channels, | |
height, | |
width, | |
pooled_height, | |
pooled_width, | |
sampling_ratio, | |
rois_.data_ptr<scalar_t>(), | |
output.data_ptr<scalar_t>(), | |
aligned); | |
}); | |
return output; | |
} | |
at::Tensor ROIAlign_backward_cpu( | |
const at::Tensor& grad, | |
const at::Tensor& rois, | |
const float spatial_scale, | |
const int pooled_height, | |
const int pooled_width, | |
const int batch_size, | |
const int channels, | |
const int height, | |
const int width, | |
const int sampling_ratio, | |
bool aligned) { | |
AT_ASSERTM(grad.device().is_cpu(), "grad must be a CPU tensor"); | |
AT_ASSERTM(rois.device().is_cpu(), "rois must be a CPU tensor"); | |
at::TensorArg grad_t{grad, "grad", 1}, rois_t{rois, "rois", 2}; | |
at::CheckedFrom c = "ROIAlign_backward_cpu"; | |
at::checkAllSameType(c, {grad_t, rois_t}); | |
at::Tensor grad_input = | |
at::zeros({batch_size, channels, height, width}, grad.options()); | |
// handle possibly empty gradients | |
if (grad.numel() == 0) { | |
return grad_input; | |
} | |
// get stride values to ensure indexing into gradients is correct. | |
int n_stride = grad.stride(0); | |
int c_stride = grad.stride(1); | |
int h_stride = grad.stride(2); | |
int w_stride = grad.stride(3); | |
auto rois_ = rois.contiguous(); | |
AT_DISPATCH_FLOATING_TYPES_AND_HALF( | |
grad.scalar_type(), "ROIAlign_forward", [&] { | |
ROIAlignBackward<scalar_t>( | |
grad.numel(), | |
grad.data_ptr<scalar_t>(), | |
spatial_scale, | |
channels, | |
height, | |
width, | |
pooled_height, | |
pooled_width, | |
sampling_ratio, | |
grad_input.data_ptr<scalar_t>(), | |
rois_.data_ptr<scalar_t>(), | |
n_stride, | |
c_stride, | |
h_stride, | |
w_stride, | |
aligned); | |
}); | |
return grad_input; | |
} | |
} // namespace detectron2 | |