Spaces:
No application file
No application file
| // Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. | |
| using namespace std; | |
| // experimental. don't use | |
| int main(int argc, const char* argv[]) { | |
| if (argc != 3) { | |
| return 1; | |
| } | |
| std::string image_file = argv[2]; | |
| torch::autograd::AutoGradMode guard(false); | |
| auto module = torch::jit::load(argv[1]); | |
| assert(module.buffers().size() > 0); | |
| // Assume that the entire model is on the same device. | |
| // We just put input to this device. | |
| auto device = (*begin(module.buffers())).device(); | |
| cv::Mat input_img = cv::imread(image_file, cv::IMREAD_COLOR); | |
| const int height = input_img.rows; | |
| const int width = input_img.cols; | |
| // FPN models require divisibility of 32 | |
| assert(height % 32 == 0 && width % 32 == 0); | |
| const int channels = 3; | |
| auto input = torch::from_blob( | |
| input_img.data, {1, height, width, channels}, torch::kUInt8); | |
| // NHWC to NCHW | |
| input = input.to(device, torch::kFloat).permute({0, 3, 1, 2}).contiguous(); | |
| std::array<float, 3> im_info_data{height * 1.0f, width * 1.0f, 1.0f}; | |
| auto im_info = torch::from_blob(im_info_data.data(), {1, 3}).to(device); | |
| // run the network | |
| auto output = module.forward({std::make_tuple(input, im_info)}); | |
| if (device.is_cuda()) | |
| c10::cuda::getCurrentCUDAStream().synchronize(); | |
| // run 3 more times to benchmark | |
| int N_benchmark = 3; | |
| auto start_time = chrono::high_resolution_clock::now(); | |
| for (int i = 0; i < N_benchmark; ++i) { | |
| output = module.forward({std::make_tuple(input, im_info)}); | |
| if (device.is_cuda()) | |
| c10::cuda::getCurrentCUDAStream().synchronize(); | |
| } | |
| auto end_time = chrono::high_resolution_clock::now(); | |
| auto ms = chrono::duration_cast<chrono::microseconds>(end_time - start_time) | |
| .count(); | |
| cout << "Latency (should vary with different inputs): " | |
| << ms * 1.0 / 1e6 / N_benchmark << " seconds" << endl; | |
| auto outputs = output.toTuple()->elements(); | |
| // parse Mask R-CNN outputs | |
| auto bbox = outputs[0].toTensor(), scores = outputs[1].toTensor(), | |
| labels = outputs[2].toTensor(), mask_probs = outputs[3].toTensor(); | |
| cout << "bbox: " << bbox.toString() << " " << bbox.sizes() << endl; | |
| cout << "scores: " << scores.toString() << " " << scores.sizes() << endl; | |
| cout << "labels: " << labels.toString() << " " << labels.sizes() << endl; | |
| cout << "mask_probs: " << mask_probs.toString() << " " << mask_probs.sizes() | |
| << endl; | |
| int num_instances = bbox.sizes()[0]; | |
| cout << bbox << endl; | |
| return 0; | |
| } | |