Spaces:
No application file
No application file
# Copyright (c) Facebook, Inc. and its affiliates. | |
import itertools | |
from enum import Enum | |
from typing import Any, Callable, Dict, Iterable, List, Optional, Set, Type, Union | |
import torch | |
from detectron2.config import CfgNode | |
from .lr_scheduler import WarmupCosineLR, WarmupMultiStepLR | |
_GradientClipperInput = Union[torch.Tensor, Iterable[torch.Tensor]] | |
_GradientClipper = Callable[[_GradientClipperInput], None] | |
class GradientClipType(Enum): | |
VALUE = "value" | |
NORM = "norm" | |
def _create_gradient_clipper(cfg: CfgNode) -> _GradientClipper: | |
""" | |
Creates gradient clipping closure to clip by value or by norm, | |
according to the provided config. | |
""" | |
cfg = cfg.clone() | |
def clip_grad_norm(p: _GradientClipperInput): | |
torch.nn.utils.clip_grad_norm_(p, cfg.CLIP_VALUE, cfg.NORM_TYPE) | |
def clip_grad_value(p: _GradientClipperInput): | |
torch.nn.utils.clip_grad_value_(p, cfg.CLIP_VALUE) | |
_GRADIENT_CLIP_TYPE_TO_CLIPPER = { | |
GradientClipType.VALUE: clip_grad_value, | |
GradientClipType.NORM: clip_grad_norm, | |
} | |
return _GRADIENT_CLIP_TYPE_TO_CLIPPER[GradientClipType(cfg.CLIP_TYPE)] | |
def _generate_optimizer_class_with_gradient_clipping( | |
optimizer: Type[torch.optim.Optimizer], | |
*, | |
per_param_clipper: Optional[_GradientClipper] = None, | |
global_clipper: Optional[_GradientClipper] = None | |
) -> Type[torch.optim.Optimizer]: | |
""" | |
Dynamically creates a new type that inherits the type of a given instance | |
and overrides the `step` method to add gradient clipping | |
""" | |
assert ( | |
per_param_clipper is None or global_clipper is None | |
), "Not allowed to use both per-parameter clipping and global clipping" | |
def optimizer_wgc_step(self, closure=None): | |
if per_param_clipper is not None: | |
for group in self.param_groups: | |
for p in group["params"]: | |
per_param_clipper(p) | |
else: | |
# global clipper for future use with detr | |
# (https://github.com/facebookresearch/detr/pull/287) | |
all_params = itertools.chain(*[g["params"] for g in self.param_groups]) | |
global_clipper(all_params) | |
super(type(self), self).step(closure) | |
OptimizerWithGradientClip = type( | |
optimizer.__name__ + "WithGradientClip", | |
(optimizer,), | |
{"step": optimizer_wgc_step}, | |
) | |
return OptimizerWithGradientClip | |
def maybe_add_gradient_clipping( | |
cfg: CfgNode, optimizer: Type[torch.optim.Optimizer] | |
) -> Type[torch.optim.Optimizer]: | |
""" | |
If gradient clipping is enabled through config options, wraps the existing | |
optimizer type to become a new dynamically created class OptimizerWithGradientClip | |
that inherits the given optimizer and overrides the `step` method to | |
include gradient clipping. | |
Args: | |
cfg: CfgNode, configuration options | |
optimizer: type. A subclass of torch.optim.Optimizer | |
Return: | |
type: either the input `optimizer` (if gradient clipping is disabled), or | |
a subclass of it with gradient clipping included in the `step` method. | |
""" | |
if not cfg.SOLVER.CLIP_GRADIENTS.ENABLED: | |
return optimizer | |
if isinstance(optimizer, torch.optim.Optimizer): | |
optimizer_type = type(optimizer) | |
else: | |
assert issubclass(optimizer, torch.optim.Optimizer), optimizer | |
optimizer_type = optimizer | |
grad_clipper = _create_gradient_clipper(cfg.SOLVER.CLIP_GRADIENTS) | |
OptimizerWithGradientClip = _generate_optimizer_class_with_gradient_clipping( | |
optimizer_type, per_param_clipper=grad_clipper | |
) | |
if isinstance(optimizer, torch.optim.Optimizer): | |
optimizer.__class__ = OptimizerWithGradientClip # a bit hacky, not recommended | |
return optimizer | |
else: | |
return OptimizerWithGradientClip | |
def build_optimizer(cfg: CfgNode, model: torch.nn.Module) -> torch.optim.Optimizer: | |
""" | |
Build an optimizer from config. | |
""" | |
params = get_default_optimizer_params( | |
model, | |
base_lr=cfg.SOLVER.BASE_LR, | |
weight_decay=cfg.SOLVER.WEIGHT_DECAY, | |
weight_decay_norm=cfg.SOLVER.WEIGHT_DECAY_NORM, | |
bias_lr_factor=cfg.SOLVER.BIAS_LR_FACTOR, | |
weight_decay_bias=cfg.SOLVER.WEIGHT_DECAY_BIAS, | |
) | |
return maybe_add_gradient_clipping(cfg, torch.optim.SGD)( | |
params, cfg.SOLVER.BASE_LR, momentum=cfg.SOLVER.MOMENTUM, nesterov=cfg.SOLVER.NESTEROV | |
) | |
def get_default_optimizer_params( | |
model: torch.nn.Module, | |
base_lr, | |
weight_decay, | |
weight_decay_norm, | |
bias_lr_factor=1.0, | |
weight_decay_bias=None, | |
overrides: Optional[Dict[str, Dict[str, float]]] = None, | |
): | |
""" | |
Get default param list for optimizer | |
Args: | |
overrides (dict: str -> (dict: str -> float)): | |
if not `None`, provides values for optimizer hyperparameters | |
(LR, weight decay) for module parameters with a given name; e.g. | |
{"embedding": {"lr": 0.01, "weight_decay": 0.1}} will set the LR and | |
weight decay values for all module parameters named `embedding` (default: None) | |
""" | |
if weight_decay_bias is None: | |
weight_decay_bias = weight_decay | |
norm_module_types = ( | |
torch.nn.BatchNorm1d, | |
torch.nn.BatchNorm2d, | |
torch.nn.BatchNorm3d, | |
torch.nn.SyncBatchNorm, | |
# NaiveSyncBatchNorm inherits from BatchNorm2d | |
torch.nn.GroupNorm, | |
torch.nn.InstanceNorm1d, | |
torch.nn.InstanceNorm2d, | |
torch.nn.InstanceNorm3d, | |
torch.nn.LayerNorm, | |
torch.nn.LocalResponseNorm, | |
) | |
params: List[Dict[str, Any]] = [] | |
memo: Set[torch.nn.parameter.Parameter] = set() | |
for module in model.modules(): | |
for module_param_name, value in module.named_parameters(recurse=False): | |
if not value.requires_grad: | |
continue | |
# Avoid duplicating parameters | |
if value in memo: | |
continue | |
memo.add(value) | |
schedule_params = { | |
"lr": base_lr, | |
"weight_decay": weight_decay, | |
} | |
if isinstance(module, norm_module_types): | |
schedule_params["weight_decay"] = weight_decay_norm | |
elif module_param_name == "bias": | |
# NOTE: unlike Detectron v1, we now default BIAS_LR_FACTOR to 1.0 | |
# and WEIGHT_DECAY_BIAS to WEIGHT_DECAY so that bias optimizer | |
# hyperparameters are by default exactly the same as for regular | |
# weights. | |
schedule_params["lr"] = base_lr * bias_lr_factor | |
schedule_params["weight_decay"] = weight_decay_bias | |
if overrides is not None and module_param_name in overrides: | |
schedule_params.update(overrides[module_param_name]) | |
params += [ | |
{ | |
"params": [value], | |
"lr": schedule_params["lr"], | |
"weight_decay": schedule_params["weight_decay"], | |
} | |
] | |
return params | |
def build_lr_scheduler( | |
cfg: CfgNode, optimizer: torch.optim.Optimizer | |
) -> torch.optim.lr_scheduler._LRScheduler: | |
""" | |
Build a LR scheduler from config. | |
""" | |
name = cfg.SOLVER.LR_SCHEDULER_NAME | |
if name == "WarmupMultiStepLR": | |
return WarmupMultiStepLR( | |
optimizer, | |
cfg.SOLVER.STEPS, | |
cfg.SOLVER.GAMMA, | |
warmup_factor=cfg.SOLVER.WARMUP_FACTOR, | |
warmup_iters=cfg.SOLVER.WARMUP_ITERS, | |
warmup_method=cfg.SOLVER.WARMUP_METHOD, | |
) | |
elif name == "WarmupCosineLR": | |
return WarmupCosineLR( | |
optimizer, | |
cfg.SOLVER.MAX_ITER, | |
warmup_factor=cfg.SOLVER.WARMUP_FACTOR, | |
warmup_iters=cfg.SOLVER.WARMUP_ITERS, | |
warmup_method=cfg.SOLVER.WARMUP_METHOD, | |
) | |
else: | |
raise ValueError("Unknown LR scheduler: {}".format(name)) | |