JF1999's picture
Upload 413 files
430de99 verified
raw
history blame
10.8 kB
# Copyright (c) Facebook, Inc. and its affiliates.
import copy
import logging
import os
import torch
from caffe2.proto import caffe2_pb2
from torch import nn
from detectron2.config import CfgNode as CN
from detectron2.utils.file_io import PathManager
from .caffe2_inference import ProtobufDetectionModel
from .caffe2_modeling import META_ARCH_CAFFE2_EXPORT_TYPE_MAP, convert_batched_inputs_to_c2_format
from .shared import get_pb_arg_vali, get_pb_arg_vals, save_graph
__all__ = [
"add_export_config",
"export_caffe2_model",
"Caffe2Model",
"export_onnx_model",
"Caffe2Tracer",
]
def add_export_config(cfg):
"""
Args:
cfg (CfgNode): a detectron2 config
Returns:
CfgNode: an updated config with new options that will be used
by :class:`Caffe2Tracer`.
"""
is_frozen = cfg.is_frozen()
cfg.defrost()
cfg.EXPORT_CAFFE2 = CN()
cfg.EXPORT_CAFFE2.USE_HEATMAP_MAX_KEYPOINT = False
if is_frozen:
cfg.freeze()
return cfg
class Caffe2Tracer:
"""
Make a detectron2 model traceable with caffe2 style.
An original detectron2 model may not be traceable, or
cannot be deployed directly after being traced, due to some reasons:
1. control flow in some ops
2. custom ops
3. complicated pre/post processing
This class provides a traceable version of a detectron2 model by:
1. Rewrite parts of the model using ops in caffe2. Note that some ops do
not have GPU implementation.
2. Define the inputs "after pre-processing" as inputs to the model
3. Remove post-processing and produce raw layer outputs
More specifically about inputs: all builtin models take two input tensors.
1. NCHW float "data" which is an image (usually in [0, 255])
2. Nx3 float "im_info", each row of which is (height, width, 1.0)
After making a traceable model, the class provide methods to export such a
model to different deployment formats.
The class currently only supports models using builtin meta architectures.
"""
def __init__(self, cfg, model, inputs):
"""
Args:
cfg (CfgNode): a detectron2 config, with extra export-related options
added by :func:`add_export_config`.
model (nn.Module): a model built by
:func:`detectron2.modeling.build_model`. Weights have to be already
loaded to this model.
inputs: sample inputs that the given model takes for inference.
Will be used to trace the model. Random input with no detected objects
will not work if the model has data-dependent control flow (e.g., R-CNN).
"""
assert isinstance(cfg, CN), cfg
assert isinstance(model, torch.nn.Module), type(model)
if "EXPORT_CAFFE2" not in cfg:
cfg = add_export_config(cfg) # will just the defaults
self.cfg = cfg
self.model = model
self.inputs = inputs
def _get_traceable(self):
# TODO how to make it extensible to support custom models
C2MetaArch = META_ARCH_CAFFE2_EXPORT_TYPE_MAP[self.cfg.MODEL.META_ARCHITECTURE]
traceable_model = C2MetaArch(self.cfg, copy.deepcopy(self.model))
traceable_inputs = traceable_model.get_caffe2_inputs(self.inputs)
return traceable_model, traceable_inputs
def export_caffe2(self):
"""
Export the model to Caffe2's protobuf format.
The returned object can be saved with ``.save_protobuf()`` method.
The result can be loaded and executed using Caffe2 runtime.
Returns:
Caffe2Model
"""
from .caffe2_export import export_caffe2_detection_model
model, inputs = self._get_traceable()
predict_net, init_net = export_caffe2_detection_model(model, inputs)
return Caffe2Model(predict_net, init_net)
def export_onnx(self):
"""
Export the model to ONNX format.
Note that the exported model contains custom ops only available in caffe2, therefore it
cannot be directly executed by other runtime (such as onnxruntime or TensorRT).
Post-processing or transformation passes may be applied on the model to accommodate
different runtimes, but we currently do not provide support for them.
Returns:
onnx.ModelProto: an onnx model.
"""
from .caffe2_export import export_onnx_model as export_onnx_model_impl
model, inputs = self._get_traceable()
return export_onnx_model_impl(model, (inputs,))
def export_torchscript(self):
"""
Export the model to a ``torch.jit.TracedModule`` by tracing.
The returned object can be saved to a file by ``.save()``.
Returns:
torch.jit.TracedModule: a torch TracedModule
"""
model, inputs = self._get_traceable()
logger = logging.getLogger(__name__)
logger.info("Tracing the model with torch.jit.trace ...")
with torch.no_grad():
return torch.jit.trace(model, (inputs,))
def export_caffe2_model(cfg, model, inputs):
"""
Export a detectron2 model to caffe2 format.
Args:
cfg (CfgNode): a detectron2 config, with extra export-related options
added by :func:`add_export_config`.
model (nn.Module): a model built by
:func:`detectron2.modeling.build_model`.
It will be modified by this function.
inputs: sample inputs that the given model takes for inference.
Will be used to trace the model.
Returns:
Caffe2Model
"""
return Caffe2Tracer(cfg, model, inputs).export_caffe2()
def export_onnx_model(cfg, model, inputs):
"""
Export a detectron2 model to ONNX format.
Note that the exported model contains custom ops only available in caffe2, therefore it
cannot be directly executed by other runtime. Post-processing or transformation passes
may be applied on the model to accommodate different runtimes, but we currently do not
provide support for them.
Args:
cfg (CfgNode): a detectron2 config, with extra export-related options
added by :func:`add_export_config`.
model (nn.Module): a model built by
:func:`detectron2.modeling.build_model`.
It will be modified by this function.
inputs: sample inputs that the given model takes for inference.
Will be used to trace the model.
Returns:
onnx.ModelProto: an onnx model.
"""
return Caffe2Tracer(cfg, model, inputs).export_onnx()
class Caffe2Model(nn.Module):
"""
A wrapper around the traced model in caffe2's pb format.
Examples:
::
model = Caffe2Model.load_protobuf("dir/with/pb/files")
inputs = [{"image": img_tensor_CHW}]
outputs = model(inputs)
"""
def __init__(self, predict_net, init_net):
super().__init__()
self.eval() # always in eval mode
self._predict_net = predict_net
self._init_net = init_net
self._predictor = None
__init__.__HIDE_SPHINX_DOC__ = True
@property
def predict_net(self):
"""
Returns:
core.Net: the underlying caffe2 predict net
"""
return self._predict_net
@property
def init_net(self):
"""
Returns:
core.Net: the underlying caffe2 init net
"""
return self._init_net
def save_protobuf(self, output_dir):
"""
Save the model as caffe2's protobuf format.
Args:
output_dir (str): the output directory to save protobuf files.
"""
logger = logging.getLogger(__name__)
logger.info("Saving model to {} ...".format(output_dir))
if not PathManager.exists(output_dir):
PathManager.mkdirs(output_dir)
with PathManager.open(os.path.join(output_dir, "model.pb"), "wb") as f:
f.write(self._predict_net.SerializeToString())
with PathManager.open(os.path.join(output_dir, "model.pbtxt"), "w") as f:
f.write(str(self._predict_net))
with PathManager.open(os.path.join(output_dir, "model_init.pb"), "wb") as f:
f.write(self._init_net.SerializeToString())
def save_graph(self, output_file, inputs=None):
"""
Save the graph as SVG format.
Args:
output_file (str): a SVG file
inputs: optional inputs given to the model.
If given, the inputs will be used to run the graph to record
shape of every tensor. The shape information will be
saved together with the graph.
"""
from .caffe2_export import run_and_save_graph
if inputs is None:
save_graph(self._predict_net, output_file, op_only=False)
else:
size_divisibility = get_pb_arg_vali(self._predict_net, "size_divisibility", 0)
device = get_pb_arg_vals(self._predict_net, "device", b"cpu").decode("ascii")
inputs = convert_batched_inputs_to_c2_format(inputs, size_divisibility, device)
inputs = [x.cpu().numpy() for x in inputs]
run_and_save_graph(self._predict_net, self._init_net, inputs, output_file)
@staticmethod
def load_protobuf(dir):
"""
Args:
dir (str): a directory used to save Caffe2Model with
:meth:`save_protobuf`.
The files "model.pb" and "model_init.pb" are needed.
Returns:
Caffe2Model: the caffe2 model loaded from this directory.
"""
predict_net = caffe2_pb2.NetDef()
with PathManager.open(os.path.join(dir, "model.pb"), "rb") as f:
predict_net.ParseFromString(f.read())
init_net = caffe2_pb2.NetDef()
with PathManager.open(os.path.join(dir, "model_init.pb"), "rb") as f:
init_net.ParseFromString(f.read())
return Caffe2Model(predict_net, init_net)
def __call__(self, inputs):
"""
An interface that wraps around a caffe2 model and mimics detectron2's models'
input/output format. See details about the format at :doc:`/tutorials/models`.
This is used to compare the outputs of caffe2 model with its original torch model.
Due to the extra conversion between torch/caffe2, this method is not meant for
benchmark. Because of the conversion, this method also has dependency
on detectron2 in order to convert to detectron2's output format.
"""
if self._predictor is None:
self._predictor = ProtobufDetectionModel(self._predict_net, self._init_net)
return self._predictor(inputs)