Spaces:
No application file
No application file
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| import itertools | |
| import json | |
| import logging | |
| import numpy as np | |
| import os | |
| from collections import OrderedDict | |
| import PIL.Image as Image | |
| import pycocotools.mask as mask_util | |
| import torch | |
| from detectron2.data import DatasetCatalog, MetadataCatalog | |
| from detectron2.utils.comm import all_gather, is_main_process, synchronize | |
| from detectron2.utils.file_io import PathManager | |
| from .evaluator import DatasetEvaluator | |
| class SemSegEvaluator(DatasetEvaluator): | |
| """ | |
| Evaluate semantic segmentation metrics. | |
| """ | |
| def __init__( | |
| self, dataset_name, distributed, output_dir=None, *, num_classes=None, ignore_label=None | |
| ): | |
| """ | |
| Args: | |
| dataset_name (str): name of the dataset to be evaluated. | |
| distributed (True): if True, will collect results from all ranks for evaluation. | |
| Otherwise, will evaluate the results in the current process. | |
| output_dir (str): an output directory to dump results. | |
| num_classes, ignore_label: deprecated argument | |
| """ | |
| self._logger = logging.getLogger(__name__) | |
| if num_classes is not None: | |
| self._logger.warn( | |
| "SemSegEvaluator(num_classes) is deprecated! It should be obtained from metadata." | |
| ) | |
| if ignore_label is not None: | |
| self._logger.warn( | |
| "SemSegEvaluator(ignore_label) is deprecated! It should be obtained from metadata." | |
| ) | |
| self._dataset_name = dataset_name | |
| self._distributed = distributed | |
| self._output_dir = output_dir | |
| self._cpu_device = torch.device("cpu") | |
| self.input_file_to_gt_file = { | |
| dataset_record["file_name"]: dataset_record["sem_seg_file_name"] | |
| for dataset_record in DatasetCatalog.get(dataset_name) | |
| } | |
| meta = MetadataCatalog.get(dataset_name) | |
| # Dict that maps contiguous training ids to COCO category ids | |
| try: | |
| c2d = meta.stuff_dataset_id_to_contiguous_id | |
| self._contiguous_id_to_dataset_id = {v: k for k, v in c2d.items()} | |
| except AttributeError: | |
| self._contiguous_id_to_dataset_id = None | |
| self._class_names = meta.stuff_classes | |
| self._num_classes = len(meta.stuff_classes) | |
| if num_classes is not None: | |
| assert self._num_classes == num_classes, f"{self._num_classes} != {num_classes}" | |
| self._ignore_label = ignore_label if ignore_label is not None else meta.ignore_label | |
| def reset(self): | |
| self._conf_matrix = np.zeros((self._num_classes + 1, self._num_classes + 1), dtype=np.int64) | |
| self._predictions = [] | |
| def process(self, inputs, outputs): | |
| """ | |
| Args: | |
| inputs: the inputs to a model. | |
| It is a list of dicts. Each dict corresponds to an image and | |
| contains keys like "height", "width", "file_name". | |
| outputs: the outputs of a model. It is either list of semantic segmentation predictions | |
| (Tensor [H, W]) or list of dicts with key "sem_seg" that contains semantic | |
| segmentation prediction in the same format. | |
| """ | |
| for input, output in zip(inputs, outputs): | |
| output = output["sem_seg"].argmax(dim=0).to(self._cpu_device) | |
| pred = np.array(output, dtype=np.int) | |
| with PathManager.open(self.input_file_to_gt_file[input["file_name"]], "rb") as f: | |
| gt = np.array(Image.open(f), dtype=np.int) | |
| gt[gt == self._ignore_label] = self._num_classes | |
| self._conf_matrix += np.bincount( | |
| (self._num_classes + 1) * pred.reshape(-1) + gt.reshape(-1), | |
| minlength=self._conf_matrix.size, | |
| ).reshape(self._conf_matrix.shape) | |
| self._predictions.extend(self.encode_json_sem_seg(pred, input["file_name"])) | |
| def evaluate(self): | |
| """ | |
| Evaluates standard semantic segmentation metrics (http://cocodataset.org/#stuff-eval): | |
| * Mean intersection-over-union averaged across classes (mIoU) | |
| * Frequency Weighted IoU (fwIoU) | |
| * Mean pixel accuracy averaged across classes (mACC) | |
| * Pixel Accuracy (pACC) | |
| """ | |
| if self._distributed: | |
| synchronize() | |
| conf_matrix_list = all_gather(self._conf_matrix) | |
| self._predictions = all_gather(self._predictions) | |
| self._predictions = list(itertools.chain(*self._predictions)) | |
| if not is_main_process(): | |
| return | |
| self._conf_matrix = np.zeros_like(self._conf_matrix) | |
| for conf_matrix in conf_matrix_list: | |
| self._conf_matrix += conf_matrix | |
| if self._output_dir: | |
| PathManager.mkdirs(self._output_dir) | |
| file_path = os.path.join(self._output_dir, "sem_seg_predictions.json") | |
| with PathManager.open(file_path, "w") as f: | |
| f.write(json.dumps(self._predictions)) | |
| acc = np.full(self._num_classes, np.nan, dtype=np.float) | |
| iou = np.full(self._num_classes, np.nan, dtype=np.float) | |
| tp = self._conf_matrix.diagonal()[:-1].astype(np.float) | |
| pos_gt = np.sum(self._conf_matrix[:-1, :-1], axis=0).astype(np.float) | |
| class_weights = pos_gt / np.sum(pos_gt) | |
| pos_pred = np.sum(self._conf_matrix[:-1, :-1], axis=1).astype(np.float) | |
| acc_valid = pos_gt > 0 | |
| acc[acc_valid] = tp[acc_valid] / pos_gt[acc_valid] | |
| iou_valid = (pos_gt + pos_pred) > 0 | |
| union = pos_gt + pos_pred - tp | |
| iou[acc_valid] = tp[acc_valid] / union[acc_valid] | |
| macc = np.sum(acc[acc_valid]) / np.sum(acc_valid) | |
| miou = np.sum(iou[acc_valid]) / np.sum(iou_valid) | |
| fiou = np.sum(iou[acc_valid] * class_weights[acc_valid]) | |
| pacc = np.sum(tp) / np.sum(pos_gt) | |
| res = {} | |
| res["mIoU"] = 100 * miou | |
| res["fwIoU"] = 100 * fiou | |
| for i, name in enumerate(self._class_names): | |
| res["IoU-{}".format(name)] = 100 * iou[i] | |
| res["mACC"] = 100 * macc | |
| res["pACC"] = 100 * pacc | |
| for i, name in enumerate(self._class_names): | |
| res["ACC-{}".format(name)] = 100 * acc[i] | |
| if self._output_dir: | |
| file_path = os.path.join(self._output_dir, "sem_seg_evaluation.pth") | |
| with PathManager.open(file_path, "wb") as f: | |
| torch.save(res, f) | |
| results = OrderedDict({"sem_seg": res}) | |
| self._logger.info(results) | |
| return results | |
| def encode_json_sem_seg(self, sem_seg, input_file_name): | |
| """ | |
| Convert semantic segmentation to COCO stuff format with segments encoded as RLEs. | |
| See http://cocodataset.org/#format-results | |
| """ | |
| json_list = [] | |
| for label in np.unique(sem_seg): | |
| if self._contiguous_id_to_dataset_id is not None: | |
| assert ( | |
| label in self._contiguous_id_to_dataset_id | |
| ), "Label {} is not in the metadata info for {}".format(label, self._dataset_name) | |
| dataset_id = self._contiguous_id_to_dataset_id[label] | |
| else: | |
| dataset_id = int(label) | |
| mask = (sem_seg == label).astype(np.uint8) | |
| mask_rle = mask_util.encode(np.array(mask[:, :, None], order="F"))[0] | |
| mask_rle["counts"] = mask_rle["counts"].decode("utf-8") | |
| json_list.append( | |
| {"file_name": input_file_name, "category_id": dataset_id, "segmentation": mask_rle} | |
| ) | |
| return json_list | |