Spaces:
No application file
No application file
# Copyright (c) Facebook, Inc. and its affiliates. | |
import copy | |
import logging | |
import re | |
import torch | |
from fvcore.common.checkpoint import ( | |
get_missing_parameters_message, | |
get_unexpected_parameters_message, | |
) | |
def convert_basic_c2_names(original_keys): | |
""" | |
Apply some basic name conversion to names in C2 weights. | |
It only deals with typical backbone models. | |
Args: | |
original_keys (list[str]): | |
Returns: | |
list[str]: The same number of strings matching those in original_keys. | |
""" | |
layer_keys = copy.deepcopy(original_keys) | |
layer_keys = [ | |
{"pred_b": "linear_b", "pred_w": "linear_w"}.get(k, k) for k in layer_keys | |
] # some hard-coded mappings | |
layer_keys = [k.replace("_", ".") for k in layer_keys] | |
layer_keys = [re.sub("\\.b$", ".bias", k) for k in layer_keys] | |
layer_keys = [re.sub("\\.w$", ".weight", k) for k in layer_keys] | |
# Uniform both bn and gn names to "norm" | |
layer_keys = [re.sub("bn\\.s$", "norm.weight", k) for k in layer_keys] | |
layer_keys = [re.sub("bn\\.bias$", "norm.bias", k) for k in layer_keys] | |
layer_keys = [re.sub("bn\\.rm", "norm.running_mean", k) for k in layer_keys] | |
layer_keys = [re.sub("bn\\.running.mean$", "norm.running_mean", k) for k in layer_keys] | |
layer_keys = [re.sub("bn\\.riv$", "norm.running_var", k) for k in layer_keys] | |
layer_keys = [re.sub("bn\\.running.var$", "norm.running_var", k) for k in layer_keys] | |
layer_keys = [re.sub("bn\\.gamma$", "norm.weight", k) for k in layer_keys] | |
layer_keys = [re.sub("bn\\.beta$", "norm.bias", k) for k in layer_keys] | |
layer_keys = [re.sub("gn\\.s$", "norm.weight", k) for k in layer_keys] | |
layer_keys = [re.sub("gn\\.bias$", "norm.bias", k) for k in layer_keys] | |
# stem | |
layer_keys = [re.sub("^res\\.conv1\\.norm\\.", "conv1.norm.", k) for k in layer_keys] | |
# to avoid mis-matching with "conv1" in other components (e.g. detection head) | |
layer_keys = [re.sub("^conv1\\.", "stem.conv1.", k) for k in layer_keys] | |
# layer1-4 is used by torchvision, however we follow the C2 naming strategy (res2-5) | |
# layer_keys = [re.sub("^res2.", "layer1.", k) for k in layer_keys] | |
# layer_keys = [re.sub("^res3.", "layer2.", k) for k in layer_keys] | |
# layer_keys = [re.sub("^res4.", "layer3.", k) for k in layer_keys] | |
# layer_keys = [re.sub("^res5.", "layer4.", k) for k in layer_keys] | |
# blocks | |
layer_keys = [k.replace(".branch1.", ".shortcut.") for k in layer_keys] | |
layer_keys = [k.replace(".branch2a.", ".conv1.") for k in layer_keys] | |
layer_keys = [k.replace(".branch2b.", ".conv2.") for k in layer_keys] | |
layer_keys = [k.replace(".branch2c.", ".conv3.") for k in layer_keys] | |
# DensePose substitutions | |
layer_keys = [re.sub("^body.conv.fcn", "body_conv_fcn", k) for k in layer_keys] | |
layer_keys = [k.replace("AnnIndex.lowres", "ann_index_lowres") for k in layer_keys] | |
layer_keys = [k.replace("Index.UV.lowres", "index_uv_lowres") for k in layer_keys] | |
layer_keys = [k.replace("U.lowres", "u_lowres") for k in layer_keys] | |
layer_keys = [k.replace("V.lowres", "v_lowres") for k in layer_keys] | |
return layer_keys | |
def convert_c2_detectron_names(weights): | |
""" | |
Map Caffe2 Detectron weight names to Detectron2 names. | |
Args: | |
weights (dict): name -> tensor | |
Returns: | |
dict: detectron2 names -> tensor | |
dict: detectron2 names -> C2 names | |
""" | |
logger = logging.getLogger(__name__) | |
logger.info("Remapping C2 weights ......") | |
original_keys = sorted(weights.keys()) | |
layer_keys = copy.deepcopy(original_keys) | |
layer_keys = convert_basic_c2_names(layer_keys) | |
# -------------------------------------------------------------------------- | |
# RPN hidden representation conv | |
# -------------------------------------------------------------------------- | |
# FPN case | |
# In the C2 model, the RPN hidden layer conv is defined for FPN level 2 and then | |
# shared for all other levels, hence the appearance of "fpn2" | |
layer_keys = [ | |
k.replace("conv.rpn.fpn2", "proposal_generator.rpn_head.conv") for k in layer_keys | |
] | |
# Non-FPN case | |
layer_keys = [k.replace("conv.rpn", "proposal_generator.rpn_head.conv") for k in layer_keys] | |
# -------------------------------------------------------------------------- | |
# RPN box transformation conv | |
# -------------------------------------------------------------------------- | |
# FPN case (see note above about "fpn2") | |
layer_keys = [ | |
k.replace("rpn.bbox.pred.fpn2", "proposal_generator.rpn_head.anchor_deltas") | |
for k in layer_keys | |
] | |
layer_keys = [ | |
k.replace("rpn.cls.logits.fpn2", "proposal_generator.rpn_head.objectness_logits") | |
for k in layer_keys | |
] | |
# Non-FPN case | |
layer_keys = [ | |
k.replace("rpn.bbox.pred", "proposal_generator.rpn_head.anchor_deltas") for k in layer_keys | |
] | |
layer_keys = [ | |
k.replace("rpn.cls.logits", "proposal_generator.rpn_head.objectness_logits") | |
for k in layer_keys | |
] | |
# -------------------------------------------------------------------------- | |
# Fast R-CNN box head | |
# -------------------------------------------------------------------------- | |
layer_keys = [re.sub("^bbox\\.pred", "bbox_pred", k) for k in layer_keys] | |
layer_keys = [re.sub("^cls\\.score", "cls_score", k) for k in layer_keys] | |
layer_keys = [re.sub("^fc6\\.", "box_head.fc1.", k) for k in layer_keys] | |
layer_keys = [re.sub("^fc7\\.", "box_head.fc2.", k) for k in layer_keys] | |
# 4conv1fc head tensor names: head_conv1_w, head_conv1_gn_s | |
layer_keys = [re.sub("^head\\.conv", "box_head.conv", k) for k in layer_keys] | |
# -------------------------------------------------------------------------- | |
# FPN lateral and output convolutions | |
# -------------------------------------------------------------------------- | |
def fpn_map(name): | |
""" | |
Look for keys with the following patterns: | |
1) Starts with "fpn.inner." | |
Example: "fpn.inner.res2.2.sum.lateral.weight" | |
Meaning: These are lateral pathway convolutions | |
2) Starts with "fpn.res" | |
Example: "fpn.res2.2.sum.weight" | |
Meaning: These are FPN output convolutions | |
""" | |
splits = name.split(".") | |
norm = ".norm" if "norm" in splits else "" | |
if name.startswith("fpn.inner."): | |
# splits example: ['fpn', 'inner', 'res2', '2', 'sum', 'lateral', 'weight'] | |
stage = int(splits[2][len("res") :]) | |
return "fpn_lateral{}{}.{}".format(stage, norm, splits[-1]) | |
elif name.startswith("fpn.res"): | |
# splits example: ['fpn', 'res2', '2', 'sum', 'weight'] | |
stage = int(splits[1][len("res") :]) | |
return "fpn_output{}{}.{}".format(stage, norm, splits[-1]) | |
return name | |
layer_keys = [fpn_map(k) for k in layer_keys] | |
# -------------------------------------------------------------------------- | |
# Mask R-CNN mask head | |
# -------------------------------------------------------------------------- | |
# roi_heads.StandardROIHeads case | |
layer_keys = [k.replace(".[mask].fcn", "mask_head.mask_fcn") for k in layer_keys] | |
layer_keys = [re.sub("^\\.mask\\.fcn", "mask_head.mask_fcn", k) for k in layer_keys] | |
layer_keys = [k.replace("mask.fcn.logits", "mask_head.predictor") for k in layer_keys] | |
# roi_heads.Res5ROIHeads case | |
layer_keys = [k.replace("conv5.mask", "mask_head.deconv") for k in layer_keys] | |
# -------------------------------------------------------------------------- | |
# Keypoint R-CNN head | |
# -------------------------------------------------------------------------- | |
# interestingly, the keypoint head convs have blob names that are simply "conv_fcnX" | |
layer_keys = [k.replace("conv.fcn", "roi_heads.keypoint_head.conv_fcn") for k in layer_keys] | |
layer_keys = [ | |
k.replace("kps.score.lowres", "roi_heads.keypoint_head.score_lowres") for k in layer_keys | |
] | |
layer_keys = [k.replace("kps.score.", "roi_heads.keypoint_head.score.") for k in layer_keys] | |
# -------------------------------------------------------------------------- | |
# Done with replacements | |
# -------------------------------------------------------------------------- | |
assert len(set(layer_keys)) == len(layer_keys) | |
assert len(original_keys) == len(layer_keys) | |
new_weights = {} | |
new_keys_to_original_keys = {} | |
for orig, renamed in zip(original_keys, layer_keys): | |
new_keys_to_original_keys[renamed] = orig | |
if renamed.startswith("bbox_pred.") or renamed.startswith("mask_head.predictor."): | |
# remove the meaningless prediction weight for background class | |
new_start_idx = 4 if renamed.startswith("bbox_pred.") else 1 | |
new_weights[renamed] = weights[orig][new_start_idx:] | |
logger.info( | |
"Remove prediction weight for background class in {}. The shape changes from " | |
"{} to {}.".format( | |
renamed, tuple(weights[orig].shape), tuple(new_weights[renamed].shape) | |
) | |
) | |
elif renamed.startswith("cls_score."): | |
# move weights of bg class from original index 0 to last index | |
logger.info( | |
"Move classification weights for background class in {} from index 0 to " | |
"index {}.".format(renamed, weights[orig].shape[0] - 1) | |
) | |
new_weights[renamed] = torch.cat([weights[orig][1:], weights[orig][:1]]) | |
else: | |
new_weights[renamed] = weights[orig] | |
return new_weights, new_keys_to_original_keys | |
# Note the current matching is not symmetric. | |
# it assumes model_state_dict will have longer names. | |
def align_and_update_state_dicts(model_state_dict, ckpt_state_dict, c2_conversion=True): | |
""" | |
Match names between the two state-dict, and update the values of model_state_dict in-place with | |
copies of the matched tensor in ckpt_state_dict. | |
If `c2_conversion==True`, `ckpt_state_dict` is assumed to be a Caffe2 | |
model and will be renamed at first. | |
Strategy: suppose that the models that we will create will have prefixes appended | |
to each of its keys, for example due to an extra level of nesting that the original | |
pre-trained weights from ImageNet won't contain. For example, model.state_dict() | |
might return backbone[0].body.res2.conv1.weight, while the pre-trained model contains | |
res2.conv1.weight. We thus want to match both parameters together. | |
For that, we look for each model weight, look among all loaded keys if there is one | |
that is a suffix of the current weight name, and use it if that's the case. | |
If multiple matches exist, take the one with longest size | |
of the corresponding name. For example, for the same model as before, the pretrained | |
weight file can contain both res2.conv1.weight, as well as conv1.weight. In this case, | |
we want to match backbone[0].body.conv1.weight to conv1.weight, and | |
backbone[0].body.res2.conv1.weight to res2.conv1.weight. | |
""" | |
model_keys = sorted(model_state_dict.keys()) | |
if c2_conversion: | |
ckpt_state_dict, original_keys = convert_c2_detectron_names(ckpt_state_dict) | |
# original_keys: the name in the original dict (before renaming) | |
else: | |
original_keys = {x: x for x in ckpt_state_dict.keys()} | |
ckpt_keys = sorted(ckpt_state_dict.keys()) | |
def match(a, b): | |
# Matched ckpt_key should be a complete (starts with '.') suffix. | |
# For example, roi_heads.mesh_head.whatever_conv1 does not match conv1, | |
# but matches whatever_conv1 or mesh_head.whatever_conv1. | |
return a == b or a.endswith("." + b) | |
# get a matrix of string matches, where each (i, j) entry correspond to the size of the | |
# ckpt_key string, if it matches | |
match_matrix = [len(j) if match(i, j) else 0 for i in model_keys for j in ckpt_keys] | |
match_matrix = torch.as_tensor(match_matrix).view(len(model_keys), len(ckpt_keys)) | |
# use the matched one with longest size in case of multiple matches | |
max_match_size, idxs = match_matrix.max(1) | |
# remove indices that correspond to no-match | |
idxs[max_match_size == 0] = -1 | |
# used for logging | |
max_len_model = max(len(key) for key in model_keys) if model_keys else 1 | |
max_len_ckpt = max(len(key) for key in ckpt_keys) if ckpt_keys else 1 | |
log_str_template = "{: <{}} loaded from {: <{}} of shape {}" | |
logger = logging.getLogger(__name__) | |
# matched_pairs (matched checkpoint key --> matched model key) | |
matched_keys = {} | |
for idx_model, idx_ckpt in enumerate(idxs.tolist()): | |
if idx_ckpt == -1: | |
continue | |
key_model = model_keys[idx_model] | |
key_ckpt = ckpt_keys[idx_ckpt] | |
value_ckpt = ckpt_state_dict[key_ckpt] | |
shape_in_model = model_state_dict[key_model].shape | |
if shape_in_model != value_ckpt.shape: | |
logger.warning( | |
"Shape of {} in checkpoint is {}, while shape of {} in model is {}.".format( | |
key_ckpt, value_ckpt.shape, key_model, shape_in_model | |
) | |
) | |
logger.warning( | |
"{} will not be loaded. Please double check and see if this is desired.".format( | |
key_ckpt | |
) | |
) | |
continue | |
model_state_dict[key_model] = value_ckpt.clone() | |
if key_ckpt in matched_keys: # already added to matched_keys | |
logger.error( | |
"Ambiguity found for {} in checkpoint!" | |
"It matches at least two keys in the model ({} and {}).".format( | |
key_ckpt, key_model, matched_keys[key_ckpt] | |
) | |
) | |
raise ValueError("Cannot match one checkpoint key to multiple keys in the model.") | |
matched_keys[key_ckpt] = key_model | |
logger.info( | |
log_str_template.format( | |
key_model, | |
max_len_model, | |
original_keys[key_ckpt], | |
max_len_ckpt, | |
tuple(shape_in_model), | |
) | |
) | |
matched_model_keys = matched_keys.values() | |
matched_ckpt_keys = matched_keys.keys() | |
# print warnings about unmatched keys on both side | |
unmatched_model_keys = [k for k in model_keys if k not in matched_model_keys] | |
if len(unmatched_model_keys): | |
logger.info(get_missing_parameters_message(unmatched_model_keys)) | |
unmatched_ckpt_keys = [k for k in ckpt_keys if k not in matched_ckpt_keys] | |
if len(unmatched_ckpt_keys): | |
logger.info( | |
get_unexpected_parameters_message(original_keys[x] for x in unmatched_ckpt_keys) | |
) | |