File size: 6,279 Bytes
430de99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved

import logging
import numpy as np
import unittest
from unittest import mock

from detectron2.config import get_cfg
from detectron2.data import detection_utils
from detectron2.data import transforms as T
from detectron2.utils.logger import setup_logger

logger = logging.getLogger(__name__)


class TestTransforms(unittest.TestCase):
    def setUp(self):
        setup_logger()

    def test_apply_rotated_boxes(self):
        np.random.seed(125)
        cfg = get_cfg()
        is_train = True
        augs = detection_utils.build_augmentation(cfg, is_train)
        image = np.random.rand(200, 300)
        image, transforms = T.apply_augmentations(augs, image)
        image_shape = image.shape[:2]  # h, w
        assert image_shape == (800, 1200)
        annotation = {"bbox": [179, 97, 62, 40, -56]}

        boxes = np.array([annotation["bbox"]], dtype=np.float64)  # boxes.shape = (1, 5)
        transformed_bbox = transforms.apply_rotated_box(boxes)[0]

        expected_bbox = np.array([484, 388, 248, 160, 56], dtype=np.float64)
        err_msg = "transformed_bbox = {}, expected {}".format(transformed_bbox, expected_bbox)
        assert np.allclose(transformed_bbox, expected_bbox), err_msg

    def test_apply_rotated_boxes_unequal_scaling_factor(self):
        np.random.seed(125)
        h, w = 400, 200
        newh, neww = 800, 800
        image = np.random.rand(h, w)
        augs = []
        augs.append(T.Resize(shape=(newh, neww)))
        image, transforms = T.apply_augmentations(augs, image)
        image_shape = image.shape[:2]  # h, w
        assert image_shape == (newh, neww)

        boxes = np.array(
            [
                [150, 100, 40, 20, 0],
                [150, 100, 40, 20, 30],
                [150, 100, 40, 20, 90],
                [150, 100, 40, 20, -90],
            ],
            dtype=np.float64,
        )
        transformed_boxes = transforms.apply_rotated_box(boxes)

        expected_bboxes = np.array(
            [
                [600, 200, 160, 40, 0],
                [600, 200, 144.22205102, 52.91502622, 49.10660535],
                [600, 200, 80, 80, 90],
                [600, 200, 80, 80, -90],
            ],
            dtype=np.float64,
        )
        err_msg = "transformed_boxes = {}, expected {}".format(transformed_boxes, expected_bboxes)
        assert np.allclose(transformed_boxes, expected_bboxes), err_msg

    def test_print_augmentation(self):
        t = T.RandomCrop("relative", (100, 100))
        self.assertTrue(str(t) == "RandomCrop(crop_type='relative', crop_size=(100, 100))")

        t = T.RandomFlip(prob=0.5)
        self.assertTrue(str(t) == "RandomFlip(prob=0.5)")

        t = T.RandomFlip()
        self.assertTrue(str(t) == "RandomFlip()")

    def test_random_apply_prob_out_of_range_check(self):
        test_probabilities = {0.0: True, 0.5: True, 1.0: True, -0.01: False, 1.01: False}

        for given_probability, is_valid in test_probabilities.items():
            if not is_valid:
                self.assertRaises(AssertionError, T.RandomApply, None, prob=given_probability)
            else:
                T.RandomApply(T.NoOpTransform(), prob=given_probability)

    def test_random_apply_wrapping_aug_probability_occured_evaluation(self):
        transform_mock = mock.MagicMock(name="MockTransform", spec=T.Augmentation)
        image_mock = mock.MagicMock(name="MockImage")
        random_apply = T.RandomApply(transform_mock, prob=0.001)

        with mock.patch.object(random_apply, "_rand_range", return_value=0.0001):
            transform = random_apply.get_transform(image_mock)
        transform_mock.get_transform.assert_called_once_with(image_mock)
        self.assertIsNot(transform, transform_mock)

    def test_random_apply_wrapping_std_transform_probability_occured_evaluation(self):
        transform_mock = mock.MagicMock(name="MockTransform", spec=T.Transform)
        image_mock = mock.MagicMock(name="MockImage")
        random_apply = T.RandomApply(transform_mock, prob=0.001)

        with mock.patch.object(random_apply, "_rand_range", return_value=0.0001):
            transform = random_apply.get_transform(image_mock)
        self.assertIs(transform, transform_mock)

    def test_random_apply_probability_not_occured_evaluation(self):
        transform_mock = mock.MagicMock(name="MockTransform", spec=T.Augmentation)
        image_mock = mock.MagicMock(name="MockImage")
        random_apply = T.RandomApply(transform_mock, prob=0.001)

        with mock.patch.object(random_apply, "_rand_range", return_value=0.9):
            transform = random_apply.get_transform(image_mock)
        transform_mock.get_transform.assert_not_called()
        self.assertIsInstance(transform, T.NoOpTransform)

    def test_augmentation_input_args(self):
        input_shape = (100, 100)
        output_shape = (50, 50)

        # define two augmentations with different args
        class TG1(T.Augmentation):
            input_args = ("image", "sem_seg")

            def get_transform(self, image, sem_seg):
                return T.ResizeTransform(
                    input_shape[0], input_shape[1], output_shape[0], output_shape[1]
                )

        class TG2(T.Augmentation):
            def get_transform(self, image):
                assert image.shape[:2] == output_shape  # check that TG1 is applied
                return T.HFlipTransform(output_shape[1])

        image = np.random.rand(*input_shape).astype("float32")
        sem_seg = (np.random.rand(*input_shape) < 0.5).astype("uint8")
        inputs = T.StandardAugInput(image, sem_seg=sem_seg)  # provide two args
        tfms = inputs.apply_augmentations([TG1(), TG2()])
        self.assertIsInstance(tfms[0], T.ResizeTransform)
        self.assertIsInstance(tfms[1], T.HFlipTransform)
        self.assertTrue(inputs.image.shape[:2] == output_shape)
        self.assertTrue(inputs.sem_seg.shape[:2] == output_shape)

        class TG3(T.Augmentation):
            input_args = ("image", "nonexist")

            def get_transform(self, image, nonexist):
                pass

        with self.assertRaises(AttributeError):
            inputs.apply_augmentations([TG3()])