File size: 6,112 Bytes
430de99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.

import copy
import numpy as np
import os
import unittest
import pycocotools.mask as mask_util
from fvcore.common.file_io import PathManager

from detectron2.data import MetadataCatalog, detection_utils
from detectron2.data import transforms as T
from detectron2.structures import BitMasks, BoxMode


class TestTransformAnnotations(unittest.TestCase):
    def test_transform_simple_annotation(self):
        transforms = T.TransformList([T.HFlipTransform(400)])
        anno = {
            "bbox": np.asarray([10, 10, 200, 300]),
            "bbox_mode": BoxMode.XYXY_ABS,
            "category_id": 3,
            "segmentation": [[10, 10, 100, 100, 100, 10], [150, 150, 200, 150, 200, 200]],
        }

        output = detection_utils.transform_instance_annotations(anno, transforms, (400, 400))
        self.assertTrue(np.allclose(output["bbox"], [200, 10, 390, 300]))
        self.assertEqual(len(output["segmentation"]), len(anno["segmentation"]))
        self.assertTrue(np.allclose(output["segmentation"][0], [390, 10, 300, 100, 300, 10]))

        detection_utils.annotations_to_instances([output, output], (400, 400))

    def test_flip_keypoints(self):
        transforms = T.TransformList([T.HFlipTransform(400)])
        anno = {
            "bbox": np.asarray([10, 10, 200, 300]),
            "bbox_mode": BoxMode.XYXY_ABS,
            "keypoints": np.random.rand(17, 3) * 50 + 15,
        }

        output = detection_utils.transform_instance_annotations(
            copy.deepcopy(anno),
            transforms,
            (400, 400),
            keypoint_hflip_indices=detection_utils.create_keypoint_hflip_indices(
                ["keypoints_coco_2017_train"]
            ),
        )
        # The first keypoint is nose
        self.assertTrue(np.allclose(output["keypoints"][0, 0], 400 - anno["keypoints"][0, 0]))
        # The last 16 keypoints are 8 left-right pairs
        self.assertTrue(
            np.allclose(
                output["keypoints"][1:, 0].reshape(-1, 2)[:, ::-1],
                400 - anno["keypoints"][1:, 0].reshape(-1, 2),
            )
        )
        self.assertTrue(
            np.allclose(
                output["keypoints"][1:, 1:].reshape(-1, 2, 2)[:, ::-1, :],
                anno["keypoints"][1:, 1:].reshape(-1, 2, 2),
            )
        )

    def test_crop(self):
        transforms = T.TransformList([T.CropTransform(300, 300, 10, 10)])
        keypoints = np.random.rand(17, 3) * 50 + 15
        keypoints[:, 2] = 2
        anno = {
            "bbox": np.asarray([10, 10, 200, 400]),
            "bbox_mode": BoxMode.XYXY_ABS,
            "keypoints": keypoints,
        }

        output = detection_utils.transform_instance_annotations(
            copy.deepcopy(anno), transforms, (10, 10)
        )
        # box is shifted and cropped
        self.assertTrue((output["bbox"] == np.asarray([0, 0, 0, 10])).all())
        # keypoints are no longer visible
        self.assertTrue((output["keypoints"][:, 2] == 0).all())

    def test_transform_RLE(self):
        transforms = T.TransformList([T.HFlipTransform(400)])
        mask = np.zeros((300, 400), order="F").astype("uint8")
        mask[:, :200] = 1

        anno = {
            "bbox": np.asarray([10, 10, 200, 300]),
            "bbox_mode": BoxMode.XYXY_ABS,
            "segmentation": mask_util.encode(mask[:, :, None])[0],
            "category_id": 3,
        }
        output = detection_utils.transform_instance_annotations(
            copy.deepcopy(anno), transforms, (300, 400)
        )
        mask = output["segmentation"]
        self.assertTrue((mask[:, 200:] == 1).all())
        self.assertTrue((mask[:, :200] == 0).all())

        inst = detection_utils.annotations_to_instances(
            [output, output], (400, 400), mask_format="bitmask"
        )
        self.assertTrue(isinstance(inst.gt_masks, BitMasks))

    def test_transform_RLE_resize(self):
        transforms = T.TransformList(
            [T.HFlipTransform(400), T.ScaleTransform(300, 400, 400, 400, "bilinear")]
        )
        mask = np.zeros((300, 400), order="F").astype("uint8")
        mask[:, :200] = 1

        anno = {
            "bbox": np.asarray([10, 10, 200, 300]),
            "bbox_mode": BoxMode.XYXY_ABS,
            "segmentation": mask_util.encode(mask[:, :, None])[0],
            "category_id": 3,
        }
        output = detection_utils.transform_instance_annotations(
            copy.deepcopy(anno), transforms, (400, 400)
        )

        inst = detection_utils.annotations_to_instances(
            [output, output], (400, 400), mask_format="bitmask"
        )
        self.assertTrue(isinstance(inst.gt_masks, BitMasks))

    def test_gen_crop(self):
        instance = {"bbox": [10, 10, 100, 100], "bbox_mode": BoxMode.XYXY_ABS}
        t = detection_utils.gen_crop_transform_with_instance((10, 10), (150, 150), instance)
        # the box center must fall into the cropped region
        self.assertTrue(t.x0 <= 55 <= t.x0 + t.w)

    def test_gen_crop_outside_boxes(self):
        instance = {"bbox": [10, 10, 100, 100], "bbox_mode": BoxMode.XYXY_ABS}
        with self.assertRaises(AssertionError):
            detection_utils.gen_crop_transform_with_instance((10, 10), (15, 15), instance)

    def test_read_sem_seg(self):
        cityscapes_dir = MetadataCatalog.get("cityscapes_fine_sem_seg_val").gt_dir
        sem_seg_gt_path = os.path.join(
            cityscapes_dir, "frankfurt", "frankfurt_000001_083852_gtFine_labelIds.png"
        )
        if not PathManager.exists(sem_seg_gt_path):
            raise unittest.SkipTest(
                "Semantic segmentation ground truth {} not found.".format(sem_seg_gt_path)
            )
        sem_seg = detection_utils.read_image(sem_seg_gt_path, "L")
        self.assertEqual(sem_seg.ndim, 3)
        self.assertEqual(sem_seg.shape[2], 1)
        self.assertEqual(sem_seg.dtype, np.uint8)
        self.assertEqual(sem_seg.max(), 32)
        self.assertEqual(sem_seg.min(), 1)


if __name__ == "__main__":
    unittest.main()