File size: 7,316 Bytes
430de99
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
# Copyright (c) Facebook, Inc. and its affiliates.
import numpy as np
from typing import Dict
import fvcore.nn.weight_init as weight_init
import torch
from torch import nn
from torch.nn import functional as F

from detectron2.layers import Conv2d, ShapeSpec
from detectron2.structures import ImageList
from detectron2.utils.registry import Registry

from ..backbone import build_backbone
from ..postprocessing import sem_seg_postprocess
from .build import META_ARCH_REGISTRY

__all__ = ["SemanticSegmentor", "SEM_SEG_HEADS_REGISTRY", "SemSegFPNHead", "build_sem_seg_head"]


SEM_SEG_HEADS_REGISTRY = Registry("SEM_SEG_HEADS")
SEM_SEG_HEADS_REGISTRY.__doc__ = """
Registry for semantic segmentation heads, which make semantic segmentation predictions
from feature maps.
"""


@META_ARCH_REGISTRY.register()
class SemanticSegmentor(nn.Module):
    """
    Main class for semantic segmentation architectures.
    """

    def __init__(self, cfg):
        super().__init__()
        self.backbone = build_backbone(cfg)
        self.sem_seg_head = build_sem_seg_head(cfg, self.backbone.output_shape())
        self.register_buffer("pixel_mean", torch.Tensor(cfg.MODEL.PIXEL_MEAN).view(-1, 1, 1))
        self.register_buffer("pixel_std", torch.Tensor(cfg.MODEL.PIXEL_STD).view(-1, 1, 1))

    @property
    def device(self):
        return self.pixel_mean.device

    def forward(self, batched_inputs):
        """
        Args:
            batched_inputs: a list, batched outputs of :class:`DatasetMapper`.
                Each item in the list contains the inputs for one image.

                For now, each item in the list is a dict that contains:

                   * "image": Tensor, image in (C, H, W) format.
                   * "sem_seg": semantic segmentation ground truth
                   * Other information that's included in the original dicts, such as:
                     "height", "width" (int): the output resolution of the model (may be different
                     from input resolution), used in inference.


        Returns:
            list[dict]:
              Each dict is the output for one input image.
              The dict contains one key "sem_seg" whose value is a
              Tensor that represents the
              per-pixel segmentation prediced by the head.
              The prediction has shape KxHxW that represents the logits of
              each class for each pixel.
        """
        images = [x["image"].to(self.device) for x in batched_inputs]
        images = [(x - self.pixel_mean) / self.pixel_std for x in images]
        images = ImageList.from_tensors(images, self.backbone.size_divisibility)

        features = self.backbone(images.tensor)

        if "sem_seg" in batched_inputs[0]:
            targets = [x["sem_seg"].to(self.device) for x in batched_inputs]
            targets = ImageList.from_tensors(
                targets, self.backbone.size_divisibility, self.sem_seg_head.ignore_value
            ).tensor
        else:
            targets = None
        results, losses = self.sem_seg_head(features, targets)

        if self.training:
            return losses

        processed_results = []
        for result, input_per_image, image_size in zip(results, batched_inputs, images.image_sizes):
            height = input_per_image.get("height")
            width = input_per_image.get("width")
            r = sem_seg_postprocess(result, image_size, height, width)
            processed_results.append({"sem_seg": r})
        return processed_results


def build_sem_seg_head(cfg, input_shape):
    """
    Build a semantic segmentation head from `cfg.MODEL.SEM_SEG_HEAD.NAME`.
    """
    name = cfg.MODEL.SEM_SEG_HEAD.NAME
    return SEM_SEG_HEADS_REGISTRY.get(name)(cfg, input_shape)


@SEM_SEG_HEADS_REGISTRY.register()
class SemSegFPNHead(nn.Module):
    """
    A semantic segmentation head described in :paper:`PanopticFPN`.
    It takes FPN features as input and merges information from all
    levels of the FPN into single output.
    """

    def __init__(self, cfg, input_shape: Dict[str, ShapeSpec]):
        super().__init__()

        # fmt: off
        self.in_features      = cfg.MODEL.SEM_SEG_HEAD.IN_FEATURES
        feature_strides       = {k: v.stride for k, v in input_shape.items()}
        feature_channels      = {k: v.channels for k, v in input_shape.items()}
        self.ignore_value     = cfg.MODEL.SEM_SEG_HEAD.IGNORE_VALUE
        num_classes           = cfg.MODEL.SEM_SEG_HEAD.NUM_CLASSES
        conv_dims             = cfg.MODEL.SEM_SEG_HEAD.CONVS_DIM
        self.common_stride    = cfg.MODEL.SEM_SEG_HEAD.COMMON_STRIDE
        norm                  = cfg.MODEL.SEM_SEG_HEAD.NORM
        self.loss_weight      = cfg.MODEL.SEM_SEG_HEAD.LOSS_WEIGHT
        # fmt: on

        self.scale_heads = []
        for in_feature in self.in_features:
            head_ops = []
            head_length = max(
                1, int(np.log2(feature_strides[in_feature]) - np.log2(self.common_stride))
            )
            for k in range(head_length):
                norm_module = nn.GroupNorm(32, conv_dims) if norm == "GN" else None
                conv = Conv2d(
                    feature_channels[in_feature] if k == 0 else conv_dims,
                    conv_dims,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                    bias=not norm,
                    norm=norm_module,
                    activation=F.relu,
                )
                weight_init.c2_msra_fill(conv)
                head_ops.append(conv)
                if feature_strides[in_feature] != self.common_stride:
                    head_ops.append(
                        nn.Upsample(scale_factor=2, mode="bilinear", align_corners=False)
                    )
            self.scale_heads.append(nn.Sequential(*head_ops))
            self.add_module(in_feature, self.scale_heads[-1])
        self.predictor = Conv2d(conv_dims, num_classes, kernel_size=1, stride=1, padding=0)
        weight_init.c2_msra_fill(self.predictor)

    def forward(self, features, targets=None):
        """
        Returns:
            In training, returns (None, dict of losses)
            In inference, returns (CxHxW logits, {})
        """
        x = self.layers(features)
        if self.training:
            return None, self.losses(x, targets)
        else:
            x = F.interpolate(
                x, scale_factor=self.common_stride, mode="bilinear", align_corners=False
            )
            return x, {}

    def layers(self, features):
        for i, f in enumerate(self.in_features):
            if i == 0:
                x = self.scale_heads[i](features[f])
            else:
                x = x + self.scale_heads[i](features[f])
        x = self.predictor(x)
        return x

    def losses(self, predictions, targets):
        predictions = predictions.float()  # https://github.com/pytorch/pytorch/issues/48163
        predictions = F.interpolate(
            predictions, scale_factor=self.common_stride, mode="bilinear", align_corners=False
        )
        loss = F.cross_entropy(
            predictions, targets, reduction="mean", ignore_index=self.ignore_value
        )
        losses = {"loss_sem_seg": loss * self.loss_weight}
        return losses