Spaces:
No application file
No application file
File size: 8,422 Bytes
430de99 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
# -*- coding: utf-8 -*-
# Copyright (c) Facebook, Inc. and its affiliates.
import torch
from torch import nn
from detectron2.structures import ImageList
from ..backbone import build_backbone
from ..postprocessing import detector_postprocess, sem_seg_postprocess
from ..proposal_generator import build_proposal_generator
from ..roi_heads import build_roi_heads
from .build import META_ARCH_REGISTRY
from .semantic_seg import build_sem_seg_head
__all__ = ["PanopticFPN"]
@META_ARCH_REGISTRY.register()
class PanopticFPN(nn.Module):
"""
Implement the paper :paper:`PanopticFPN`.
"""
def __init__(self, cfg):
super().__init__()
self.instance_loss_weight = cfg.MODEL.PANOPTIC_FPN.INSTANCE_LOSS_WEIGHT
# options when combining instance & semantic outputs
self.combine_on = cfg.MODEL.PANOPTIC_FPN.COMBINE.ENABLED
self.combine_overlap_threshold = cfg.MODEL.PANOPTIC_FPN.COMBINE.OVERLAP_THRESH
self.combine_stuff_area_limit = cfg.MODEL.PANOPTIC_FPN.COMBINE.STUFF_AREA_LIMIT
self.combine_instances_confidence_threshold = (
cfg.MODEL.PANOPTIC_FPN.COMBINE.INSTANCES_CONFIDENCE_THRESH
)
self.backbone = build_backbone(cfg)
self.proposal_generator = build_proposal_generator(cfg, self.backbone.output_shape())
self.roi_heads = build_roi_heads(cfg, self.backbone.output_shape())
self.sem_seg_head = build_sem_seg_head(cfg, self.backbone.output_shape())
self.register_buffer("pixel_mean", torch.Tensor(cfg.MODEL.PIXEL_MEAN).view(-1, 1, 1))
self.register_buffer("pixel_std", torch.Tensor(cfg.MODEL.PIXEL_STD).view(-1, 1, 1))
@property
def device(self):
return self.pixel_mean.device
def forward(self, batched_inputs):
"""
Args:
batched_inputs: a list, batched outputs of :class:`DatasetMapper`.
Each item in the list contains the inputs for one image.
For now, each item in the list is a dict that contains:
* "image": Tensor, image in (C, H, W) format.
* "instances": Instances
* "sem_seg": semantic segmentation ground truth.
* Other information that's included in the original dicts, such as:
"height", "width" (int): the output resolution of the model, used in inference.
See :meth:`postprocess` for details.
Returns:
list[dict]:
each dict is the results for one image. The dict contains the following keys:
* "instances": see :meth:`GeneralizedRCNN.forward` for its format.
* "sem_seg": see :meth:`SemanticSegmentor.forward` for its format.
* "panoptic_seg": available when `PANOPTIC_FPN.COMBINE.ENABLED`.
See the return value of
:func:`combine_semantic_and_instance_outputs` for its format.
"""
images = [x["image"].to(self.device) for x in batched_inputs]
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(images, self.backbone.size_divisibility)
features = self.backbone(images.tensor)
if "proposals" in batched_inputs[0]:
proposals = [x["proposals"].to(self.device) for x in batched_inputs]
proposal_losses = {}
if "sem_seg" in batched_inputs[0]:
gt_sem_seg = [x["sem_seg"].to(self.device) for x in batched_inputs]
gt_sem_seg = ImageList.from_tensors(
gt_sem_seg, self.backbone.size_divisibility, self.sem_seg_head.ignore_value
).tensor
else:
gt_sem_seg = None
sem_seg_results, sem_seg_losses = self.sem_seg_head(features, gt_sem_seg)
if "instances" in batched_inputs[0]:
gt_instances = [x["instances"].to(self.device) for x in batched_inputs]
else:
gt_instances = None
if self.proposal_generator:
proposals, proposal_losses = self.proposal_generator(images, features, gt_instances)
detector_results, detector_losses = self.roi_heads(
images, features, proposals, gt_instances
)
if self.training:
losses = {}
losses.update(sem_seg_losses)
losses.update({k: v * self.instance_loss_weight for k, v in detector_losses.items()})
losses.update(proposal_losses)
return losses
processed_results = []
for sem_seg_result, detector_result, input_per_image, image_size in zip(
sem_seg_results, detector_results, batched_inputs, images.image_sizes
):
height = input_per_image.get("height", image_size[0])
width = input_per_image.get("width", image_size[1])
sem_seg_r = sem_seg_postprocess(sem_seg_result, image_size, height, width)
detector_r = detector_postprocess(detector_result, height, width)
processed_results.append({"sem_seg": sem_seg_r, "instances": detector_r})
if self.combine_on:
panoptic_r = combine_semantic_and_instance_outputs(
detector_r,
sem_seg_r.argmax(dim=0),
self.combine_overlap_threshold,
self.combine_stuff_area_limit,
self.combine_instances_confidence_threshold,
)
processed_results[-1]["panoptic_seg"] = panoptic_r
return processed_results
def combine_semantic_and_instance_outputs(
instance_results,
semantic_results,
overlap_threshold,
stuff_area_limit,
instances_confidence_threshold,
):
"""
Implement a simple combining logic following
"combine_semantic_and_instance_predictions.py" in panopticapi
to produce panoptic segmentation outputs.
Args:
instance_results: output of :func:`detector_postprocess`.
semantic_results: an (H, W) tensor, each is the contiguous semantic
category id
Returns:
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment.
segments_info (list[dict]): Describe each segment in `panoptic_seg`.
Each dict contains keys "id", "category_id", "isthing".
"""
panoptic_seg = torch.zeros_like(semantic_results, dtype=torch.int32)
# sort instance outputs by scores
sorted_inds = torch.argsort(-instance_results.scores)
current_segment_id = 0
segments_info = []
instance_masks = instance_results.pred_masks.to(dtype=torch.bool, device=panoptic_seg.device)
# Add instances one-by-one, check for overlaps with existing ones
for inst_id in sorted_inds:
score = instance_results.scores[inst_id].item()
if score < instances_confidence_threshold:
break
mask = instance_masks[inst_id] # H,W
mask_area = mask.sum().item()
if mask_area == 0:
continue
intersect = (mask > 0) & (panoptic_seg > 0)
intersect_area = intersect.sum().item()
if intersect_area * 1.0 / mask_area > overlap_threshold:
continue
if intersect_area > 0:
mask = mask & (panoptic_seg == 0)
current_segment_id += 1
panoptic_seg[mask] = current_segment_id
segments_info.append(
{
"id": current_segment_id,
"isthing": True,
"score": score,
"category_id": instance_results.pred_classes[inst_id].item(),
"instance_id": inst_id.item(),
}
)
# Add semantic results to remaining empty areas
semantic_labels = torch.unique(semantic_results).cpu().tolist()
for semantic_label in semantic_labels:
if semantic_label == 0: # 0 is a special "thing" class
continue
mask = (semantic_results == semantic_label) & (panoptic_seg == 0)
mask_area = mask.sum().item()
if mask_area < stuff_area_limit:
continue
current_segment_id += 1
panoptic_seg[mask] = current_segment_id
segments_info.append(
{
"id": current_segment_id,
"isthing": False,
"category_id": semantic_label,
"area": mask_area,
}
)
return panoptic_seg, segments_info
|