Spaces:
Runtime error
Runtime error
ZeyadMostafa22
commited on
Commit
·
0100779
1
Parent(s):
709b43f
finally
Browse files
app.py
CHANGED
@@ -1,3 +1,77 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torchaudio
|
4 |
+
import numpy as np
|
5 |
+
from transformers import AutoFeatureExtractor, AutoModelForAudioClassification
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torchaudio.transforms as T
|
8 |
|
9 |
+
MODEL_ID = "Zeyadd-Mostaffa/Deepfake-Audio-Detection-v1"
|
10 |
+
|
11 |
+
# 1) Load model & feature extractor
|
12 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_ID)
|
13 |
+
model = AutoModelForAudioClassification.from_pretrained(MODEL_ID)
|
14 |
+
model.eval()
|
15 |
+
|
16 |
+
# Optionally use GPU if available
|
17 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
18 |
+
model.to(device)
|
19 |
+
|
20 |
+
label_names = ["fake", "real"] # According to your label2id = {"fake": 0, "real": 1}
|
21 |
+
|
22 |
+
def classify_audio(audio_file):
|
23 |
+
"""
|
24 |
+
audio_file: path to the uploaded file (WAV, MP3, etc.)
|
25 |
+
Returns: predicted label and confidence score
|
26 |
+
"""
|
27 |
+
|
28 |
+
# 2) Load the audio file
|
29 |
+
waveform, sr = torchaudio.load(audio_file)
|
30 |
+
|
31 |
+
# If stereo, pick one channel or average
|
32 |
+
if waveform.shape[0] > 1:
|
33 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
34 |
+
waveform = waveform.squeeze() # (samples,)
|
35 |
+
|
36 |
+
# 3) Resample if needed
|
37 |
+
if sr != 16000:
|
38 |
+
resampler = T.Resample(sr, 16000)
|
39 |
+
waveform = resampler(waveform)
|
40 |
+
sr = 16000
|
41 |
+
|
42 |
+
# 3) Preprocess with feature_extractor
|
43 |
+
inputs = feature_extractor(
|
44 |
+
waveform.numpy(),
|
45 |
+
sampling_rate=sr,
|
46 |
+
return_tensors="pt",
|
47 |
+
truncation=True,
|
48 |
+
max_length=int(16000 * 6.0), # 6 second max
|
49 |
+
)
|
50 |
+
|
51 |
+
# Move everything to device
|
52 |
+
input_values = inputs["input_values"].to(device)
|
53 |
+
|
54 |
+
with torch.no_grad():
|
55 |
+
logits = model(input_values).logits
|
56 |
+
|
57 |
+
# 4) Calculate probabilities using softmax
|
58 |
+
probabilities = F.softmax(logits, dim=-1)
|
59 |
+
|
60 |
+
# Get predicted label and confidence
|
61 |
+
confidence, pred_id = torch.max(probabilities, dim=-1)
|
62 |
+
predicted_label = label_names[pred_id.item()]
|
63 |
+
|
64 |
+
# 5) Return label and confidence percentage
|
65 |
+
return f"Prediction: {predicted_label}, Confidence: {confidence.item() * 100:.2f}%"
|
66 |
+
|
67 |
+
# 6) Build Gradio interface
|
68 |
+
demo = gr.Interface(
|
69 |
+
fn=classify_audio,
|
70 |
+
inputs=gr.Audio(type="filepath"),
|
71 |
+
outputs="text",
|
72 |
+
title="Wav2Vec2 Deepfake Detection",
|
73 |
+
description="Upload an audio sample to check if it is fake or real, along with confidence."
|
74 |
+
)
|
75 |
+
|
76 |
+
if __name__ == "__main__":
|
77 |
+
demo.launch()
|