ZeyadMostafa22
commited on
Commit
·
87a4e5a
1
Parent(s):
b09c8e8
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torchaudio
|
4 |
+
import numpy as np
|
5 |
+
from transformers import AutoFeatureExtractor, AutoModelForAudioClassification
|
6 |
+
|
7 |
+
MODEL_ID = "Zeyadd-Mostaffa/wav2vec_checkpoints"
|
8 |
+
|
9 |
+
# 1) Load model & feature extractor
|
10 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(MODEL_ID)
|
11 |
+
model = AutoModelForAudioClassification.from_pretrained(MODEL_ID)
|
12 |
+
model.eval()
|
13 |
+
|
14 |
+
# Optionally use GPU if available
|
15 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
16 |
+
model.to(device)
|
17 |
+
|
18 |
+
label_names = ["fake", "real"] # According to your label2id = {"fake": 0, "real": 1}
|
19 |
+
|
20 |
+
|
21 |
+
def classify_audio(audio_file):
|
22 |
+
"""
|
23 |
+
audio_file: path to the uploaded file (WAV, MP3, etc.)
|
24 |
+
Returns: "fake" or "real"
|
25 |
+
"""
|
26 |
+
|
27 |
+
# 2) Load the audio file
|
28 |
+
# torchaudio returns (waveform, sample_rate)
|
29 |
+
waveform, sr = torchaudio.load(audio_file)
|
30 |
+
|
31 |
+
# If stereo, pick one channel or average
|
32 |
+
if waveform.shape[0] > 1:
|
33 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
34 |
+
waveform = waveform.squeeze() # (samples,)
|
35 |
+
|
36 |
+
# 3) Preprocess with feature_extractor
|
37 |
+
inputs = feature_extractor(
|
38 |
+
waveform.numpy(),
|
39 |
+
sampling_rate=sr,
|
40 |
+
return_tensors="pt",
|
41 |
+
truncation=True,
|
42 |
+
max_length=int(feature_extractor.sampling_rate * 6.0), # 6 second max
|
43 |
+
)
|
44 |
+
|
45 |
+
# Move everything to device
|
46 |
+
input_values = inputs["input_values"].to(device)
|
47 |
+
|
48 |
+
with torch.no_grad():
|
49 |
+
logits = model(input_values).logits
|
50 |
+
pred_id = torch.argmax(logits, dim=-1).item()
|
51 |
+
|
52 |
+
# 4) Return label text
|
53 |
+
predicted_label = label_names[pred_id]
|
54 |
+
return predicted_label
|
55 |
+
|
56 |
+
|
57 |
+
# 5) Build Gradio interface
|
58 |
+
demo = gr.Interface(
|
59 |
+
fn=classify_audio,
|
60 |
+
inputs=gr.Audio(source="upload", type="filepath"),
|
61 |
+
outputs="text",
|
62 |
+
title="Wav2Vec2 Deepfake Detection",
|
63 |
+
description="Upload an audio sample to check if it is fake or real."
|
64 |
+
)
|
65 |
+
|
66 |
+
if __name__ == "__main__":
|
67 |
+
demo.launch()
|