Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,10 +5,9 @@ import joblib
|
|
5 |
import warnings
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
|
8 |
-
# Suppress warnings
|
9 |
warnings.filterwarnings("ignore")
|
10 |
|
11 |
-
# Load ensemble model
|
12 |
def load_model():
|
13 |
model_path = hf_hub_download(
|
14 |
repo_id="Zeyadd-Mostaffa/final_ensemble_model",
|
@@ -18,7 +17,18 @@ def load_model():
|
|
18 |
print("β
Ensemble model loaded successfully.")
|
19 |
return model
|
20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
model = load_model()
|
|
|
22 |
|
23 |
# Define prediction function
|
24 |
def predict_employee_status(
|
@@ -26,7 +36,6 @@ def predict_employee_status(
|
|
26 |
average_monthly_hours, time_spend_company,
|
27 |
work_accident, promotion_last_5years, salary, department, threshold=0.5
|
28 |
):
|
29 |
-
# Expected columns from training
|
30 |
expected_columns = [
|
31 |
'satisfaction_level', 'last_evaluation', 'number_project', 'average_monthly_hours',
|
32 |
'time_spend_company', 'Work_accident', 'promotion_last_5years', 'salary',
|
@@ -36,17 +45,14 @@ def predict_employee_status(
|
|
36 |
'department_sales', 'department_support', 'department_technical'
|
37 |
]
|
38 |
|
39 |
-
# Construct department one-hot features
|
40 |
department_features = {col: 0 for col in expected_columns if col.startswith("department_")}
|
41 |
dept_key = f"department_{department}"
|
42 |
if dept_key in department_features:
|
43 |
department_features[dept_key] = 1
|
44 |
|
45 |
-
# Create interaction features
|
46 |
satisfaction_evaluation = satisfaction_level * last_evaluation
|
47 |
work_balance = average_monthly_hours / number_project
|
48 |
|
49 |
-
# Create input dataframe
|
50 |
input_data = {
|
51 |
"satisfaction_level": [satisfaction_level],
|
52 |
"last_evaluation": [last_evaluation],
|
@@ -63,12 +69,19 @@ def predict_employee_status(
|
|
63 |
|
64 |
input_df = pd.DataFrame(input_data)
|
65 |
|
66 |
-
# Ensure all expected columns
|
67 |
for col in expected_columns:
|
68 |
if col not in input_df.columns:
|
69 |
input_df[col] = 0
|
70 |
input_df = input_df[expected_columns]
|
71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
try:
|
73 |
prob = model.predict_proba(input_df)[0][1]
|
74 |
result = "β
Employee is likely to quit." if prob >= threshold else "β
Employee is likely to stay."
|
@@ -76,7 +89,7 @@ def predict_employee_status(
|
|
76 |
except Exception as e:
|
77 |
return f"β Prediction error: {str(e)}"
|
78 |
|
79 |
-
# Gradio
|
80 |
def gradio_interface():
|
81 |
interface = gr.Interface(
|
82 |
fn=predict_employee_status,
|
@@ -104,5 +117,3 @@ def gradio_interface():
|
|
104 |
interface.launch()
|
105 |
|
106 |
gradio_interface()
|
107 |
-
|
108 |
-
|
|
|
5 |
import warnings
|
6 |
from huggingface_hub import hf_hub_download
|
7 |
|
|
|
8 |
warnings.filterwarnings("ignore")
|
9 |
|
10 |
+
# Load ensemble model
|
11 |
def load_model():
|
12 |
model_path = hf_hub_download(
|
13 |
repo_id="Zeyadd-Mostaffa/final_ensemble_model",
|
|
|
17 |
print("β
Ensemble model loaded successfully.")
|
18 |
return model
|
19 |
|
20 |
+
# Load scaler
|
21 |
+
def load_scaler():
|
22 |
+
scaler_path = hf_hub_download(
|
23 |
+
repo_id="Zeyadd-Mostaffa/final_ensemble_model",
|
24 |
+
filename="scaler.pkl"
|
25 |
+
)
|
26 |
+
scaler = joblib.load(scaler_path)
|
27 |
+
print("β
Scaler loaded successfully.")
|
28 |
+
return scaler
|
29 |
+
|
30 |
model = load_model()
|
31 |
+
scaler = load_scaler()
|
32 |
|
33 |
# Define prediction function
|
34 |
def predict_employee_status(
|
|
|
36 |
average_monthly_hours, time_spend_company,
|
37 |
work_accident, promotion_last_5years, salary, department, threshold=0.5
|
38 |
):
|
|
|
39 |
expected_columns = [
|
40 |
'satisfaction_level', 'last_evaluation', 'number_project', 'average_monthly_hours',
|
41 |
'time_spend_company', 'Work_accident', 'promotion_last_5years', 'salary',
|
|
|
45 |
'department_sales', 'department_support', 'department_technical'
|
46 |
]
|
47 |
|
|
|
48 |
department_features = {col: 0 for col in expected_columns if col.startswith("department_")}
|
49 |
dept_key = f"department_{department}"
|
50 |
if dept_key in department_features:
|
51 |
department_features[dept_key] = 1
|
52 |
|
|
|
53 |
satisfaction_evaluation = satisfaction_level * last_evaluation
|
54 |
work_balance = average_monthly_hours / number_project
|
55 |
|
|
|
56 |
input_data = {
|
57 |
"satisfaction_level": [satisfaction_level],
|
58 |
"last_evaluation": [last_evaluation],
|
|
|
69 |
|
70 |
input_df = pd.DataFrame(input_data)
|
71 |
|
72 |
+
# Ensure all expected columns exist
|
73 |
for col in expected_columns:
|
74 |
if col not in input_df.columns:
|
75 |
input_df[col] = 0
|
76 |
input_df = input_df[expected_columns]
|
77 |
|
78 |
+
# Apply scaling to same numerical columns as training
|
79 |
+
numeric_cols = [
|
80 |
+
'satisfaction_level', 'last_evaluation',
|
81 |
+
'average_monthly_hours', 'number_project', 'work_balance'
|
82 |
+
]
|
83 |
+
input_df[numeric_cols] = scaler.transform(input_df[numeric_cols])
|
84 |
+
|
85 |
try:
|
86 |
prob = model.predict_proba(input_df)[0][1]
|
87 |
result = "β
Employee is likely to quit." if prob >= threshold else "β
Employee is likely to stay."
|
|
|
89 |
except Exception as e:
|
90 |
return f"β Prediction error: {str(e)}"
|
91 |
|
92 |
+
# Gradio UI
|
93 |
def gradio_interface():
|
94 |
interface = gr.Interface(
|
95 |
fn=predict_employee_status,
|
|
|
117 |
interface.launch()
|
118 |
|
119 |
gradio_interface()
|
|
|
|