Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import xgboost as xgb
|
3 |
+
import numpy as np
|
4 |
+
import joblib
|
5 |
+
import os
|
6 |
+
|
7 |
+
|
8 |
+
# Load your model (adjust path as needed)
|
9 |
+
def load_model():
|
10 |
+
if os.path.exists("best_model.json"):
|
11 |
+
model = xgb.Booster()
|
12 |
+
model.load_model("best_model.json")
|
13 |
+
print("β
Model loaded using XGBoost's native method.")
|
14 |
+
return model
|
15 |
+
elif os.path.exists("best_model.pkl"):
|
16 |
+
model = joblib.load("best_model.pkl")
|
17 |
+
print("β
Model loaded using Joblib.")
|
18 |
+
return model
|
19 |
+
else:
|
20 |
+
print("β No model file found.")
|
21 |
+
return None
|
22 |
+
|
23 |
+
|
24 |
+
model = load_model()
|
25 |
+
|
26 |
+
|
27 |
+
# Prediction function
|
28 |
+
def predict_employee_status(satisfaction_level, last_evaluation, number_project,
|
29 |
+
average_monthly_hours, time_spend_company,
|
30 |
+
work_accident, promotion_last_5years, salary):
|
31 |
+
input_data = np.array([[satisfaction_level, last_evaluation, number_project,
|
32 |
+
average_monthly_hours, time_spend_company,
|
33 |
+
work_accident, promotion_last_5years, salary]])
|
34 |
+
|
35 |
+
if model is None:
|
36 |
+
return "β No model found. Please upload the model file."
|
37 |
+
|
38 |
+
if isinstance(model, xgb.Booster):
|
39 |
+
dmatrix = xgb.DMatrix(input_data)
|
40 |
+
prediction = model.predict(dmatrix)[0]
|
41 |
+
result = "β
The employee is likely to Quit." if prediction > 0.5 else "β
The employee is likely to Stay."
|
42 |
+
else:
|
43 |
+
prediction = model.predict(input_data)[0]
|
44 |
+
result = "β
The employee is likely to Quit." if prediction == 1 else "β
The employee is likely to Stay."
|
45 |
+
|
46 |
+
return result
|
47 |
+
|
48 |
+
|
49 |
+
# Gradio interface
|
50 |
+
interface = gr.Interface(
|
51 |
+
fn=predict_employee_status,
|
52 |
+
inputs=[
|
53 |
+
gr.inputs.Number(label="Satisfaction Level"),
|
54 |
+
gr.inputs.Number(label="Last Evaluation"),
|
55 |
+
gr.inputs.Number(label="Number of Projects"),
|
56 |
+
gr.inputs.Number(label="Average Monthly Hours"),
|
57 |
+
gr.inputs.Number(label="Time Spent at Company (Years)"),
|
58 |
+
gr.inputs.Number(label="Work Accident (0 = No, 1 = Yes)"),
|
59 |
+
gr.inputs.Number(label="Promotion in Last 5 Years (0 = No, 1 = Yes)"),
|
60 |
+
gr.inputs.Dropdown(choices=[0, 1, 2], label="Salary Level (0 = Low, 1 = Medium, 2 = High)")
|
61 |
+
],
|
62 |
+
outputs="text",
|
63 |
+
title="Employee Retention Prediction",
|
64 |
+
description="Predict whether an employee will stay or quit based on their profile.",
|
65 |
+
live=False
|
66 |
+
)
|
67 |
+
|
68 |
+
# Launch Gradio app
|
69 |
+
interface.launch()
|