Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import numpy as np | |
| import pandas as pd | |
| import joblib | |
| import os | |
| import warnings | |
| from huggingface_hub import hf_hub_download | |
| # Suppress warnings | |
| warnings.filterwarnings("ignore") | |
| # Load ensemble model from Hugging Face Hub | |
| def load_model(): | |
| model_path = hf_hub_download( | |
| repo_id="Zeyadd-Mostaffa/final_ensemble_model", | |
| filename="final_ensemble_model.pkl" | |
| ) | |
| model = joblib.load(model_path) | |
| print("β Ensemble model loaded successfully.") | |
| return model | |
| model = load_model() | |
| # Define prediction function | |
| def predict_employee_status( | |
| satisfaction_level, last_evaluation, number_project, | |
| average_monthly_hours, time_spend_company, | |
| work_accident, promotion_last_5years, salary, department, threshold=0.5 | |
| ): | |
| # List of all departments as encoded during training | |
| departments = [ | |
| 'IT', 'RandD', 'accounting', 'hr', 'management', | |
| 'marketing', 'product_mng', 'sales', 'support', 'technical' | |
| ] | |
| # One-hot encode department | |
| department_features = {f"department_{dept}": 0 for dept in departments} | |
| if department in departments: | |
| department_features[f"department_{department}"] = 1 | |
| # Interaction features | |
| satisfaction_evaluation = satisfaction_level * last_evaluation | |
| work_balance = average_monthly_hours / number_project | |
| # Construct input DataFrame | |
| input_data = { | |
| "satisfaction_level": [satisfaction_level], | |
| "last_evaluation": [last_evaluation], | |
| "number_project": [number_project], | |
| "average_monthly_hours": [average_monthly_hours], | |
| "time_spend_company": [time_spend_company], | |
| "Work_accident": [work_accident], | |
| "promotion_last_5years": [promotion_last_5years], | |
| "salary": [salary], | |
| "satisfaction_evaluation": [satisfaction_evaluation], | |
| "work_balance": [work_balance], | |
| **department_features | |
| } | |
| input_df = pd.DataFrame(input_data) | |
| try: | |
| prob = model.predict_proba(input_df)[0][1] | |
| result = "β Employee is likely to quit." if prob >= threshold else "β Employee is likely to stay." | |
| return f"{result} (Probability: {prob:.2%})" | |
| except Exception as e: | |
| return f"β Prediction error: {str(e)}" | |
| # Gradio Interface | |
| def gradio_interface(): | |
| interface = gr.Interface( | |
| fn=predict_employee_status, | |
| inputs=[ | |
| gr.Number(label="Satisfaction Level (0.0 - 1.0)"), | |
| gr.Number(label="Last Evaluation (0.0 - 1.0)"), | |
| gr.Number(label="Number of Projects (1 - 10)"), | |
| gr.Number(label="Average Monthly Hours (80 - 320)"), | |
| gr.Number(label="Time Spend at Company (Years)"), | |
| gr.Radio([0, 1], label="Work Accident (0 = No, 1 = Yes)"), | |
| gr.Radio([0, 1], label="Promotion in Last 5 Years (0 = No, 1 = Yes)"), | |
| gr.Radio([0, 1, 2], label="Salary (0 = Low, 1 = Medium, 2 = High)"), | |
| gr.Dropdown( | |
| ['IT', 'RandD', 'accounting', 'hr', 'management', | |
| 'marketing', 'product_mng', 'sales', 'support', 'technical'], | |
| label="Department" | |
| ), | |
| gr.Slider(0.1, 0.9, value=0.5, step=0.05, label="Prediction Threshold") | |
| ], | |
| outputs="text", | |
| title="Employee Retention Prediction System (Voting Ensemble)", | |
| description="Predict whether an employee is likely to stay or quit based on their profile. Supports threshold adjustment.", | |
| theme="dark" | |
| ) | |
| interface.launch() | |
| gradio_interface() | |