import gradio as gr import tensorflow as tf from huggingface_hub import hf_hub_download from tensorflow.keras.preprocessing import image import numpy as np # Step 1: Download the model from the Hugging Face Hub model_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/my_tensorflow_model", filename="my_model.h5") # Step 2: Load the TensorFlow model model = tf.keras.models.load_model(model_path) # Step 3: Function to preprocess the input image def load_and_preprocess_image(img, target_size=(256, 256)): img = img.resize(target_size) img_array = np.array(img) / 255.0 img_array = np.expand_dims(img_array, axis=0) return img_array # Step 4: Function to make predictions def predict_image(img): img_array = load_and_preprocess_image(img) prediction = model.predict(img_array)[0][0] real_confidence = prediction * 100 fake_confidence = (1 - prediction) * 100 result_label = "Real" if real_confidence > fake_confidence else "Fake" result_text = f"The model predicts this image is '{result_label}' with {max(real_confidence, fake_confidence):.2f}% confidence." explanation = f"Real Confidence: {real_confidence:.2f}% | Fake Confidence: {fake_confidence:.2f}%" return result_text, explanation # Step 5: Define the Gradio interface interface = gr.Interface( fn=predict_image, inputs=gr.Image(type="pil", label="Upload an Image"), outputs=[ gr.Textbox(label="Prediction Result"), gr.Textbox(label="Confidence Scores") ], title="Deepfake Image Detector", description="Upload an image, and the model will classify whether it is a 'real' or 'fake' image using deep learning." ) # Step 6: Launch the app if __name__ == "__main__": interface.launch()