ZeyadMostafa22 commited on
Commit
722b211
·
1 Parent(s): 65c6122
Files changed (1) hide show
  1. app.py +4 -5
app.py CHANGED
@@ -3,7 +3,6 @@ import tensorflow as tf
3
  from huggingface_hub import hf_hub_download
4
  from tensorflow.keras.preprocessing import image
5
  import numpy as np
6
- import matplotlib.pyplot as plt
7
 
8
  # Step 1: Download the model from the Hugging Face Hub
9
  model_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/my_tensorflow_model", filename="my_model.h5")
@@ -39,7 +38,7 @@ def predict_image(img):
39
  # Determine label
40
  result_label = "Real" if real_confidence > fake_confidence else "Fake"
41
 
42
- # Return results as text and an explanation
43
  result_text = f"The model predicts this image is '{result_label}' with {max(real_confidence, fake_confidence):.2f}% confidence."
44
  explanation = f"Real Confidence: {real_confidence:.2f}% | Fake Confidence: {fake_confidence:.2f}%"
45
 
@@ -48,10 +47,10 @@ def predict_image(img):
48
  # Step 5: Define the Gradio interface
49
  interface = gr.Interface(
50
  fn=predict_image,
51
- inputs=gr.inputs.Image(type="pil", label="Upload an Image"),
52
  outputs=[
53
- gr.outputs.Textbox(label="Prediction Result"),
54
- gr.outputs.Textbox(label="Confidence Scores")
55
  ],
56
  title="Deepfake Image Detector",
57
  description="Upload an image, and the model will classify whether it is a 'real' or 'fake' image using deep learning."
 
3
  from huggingface_hub import hf_hub_download
4
  from tensorflow.keras.preprocessing import image
5
  import numpy as np
 
6
 
7
  # Step 1: Download the model from the Hugging Face Hub
8
  model_path = hf_hub_download(repo_id="Zeyadd-Mostaffa/my_tensorflow_model", filename="my_model.h5")
 
38
  # Determine label
39
  result_label = "Real" if real_confidence > fake_confidence else "Fake"
40
 
41
+ # Return results
42
  result_text = f"The model predicts this image is '{result_label}' with {max(real_confidence, fake_confidence):.2f}% confidence."
43
  explanation = f"Real Confidence: {real_confidence:.2f}% | Fake Confidence: {fake_confidence:.2f}%"
44
 
 
47
  # Step 5: Define the Gradio interface
48
  interface = gr.Interface(
49
  fn=predict_image,
50
+ inputs=gr.Image(type="pil", label="Upload an Image"),
51
  outputs=[
52
+ gr.Textbox(label="Prediction Result"),
53
+ gr.Textbox(label="Confidence Scores")
54
  ],
55
  title="Deepfake Image Detector",
56
  description="Upload an image, and the model will classify whether it is a 'real' or 'fake' image using deep learning."