Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,36 +12,30 @@ model = tf.keras.models.load_model(model_path)
|
|
12 |
|
13 |
# Step 3: Function to preprocess the input image
|
14 |
def load_and_preprocess_image(img, target_size=(256, 256)):
|
15 |
-
# Resize the image to the model's expected input size
|
16 |
img = img.resize(target_size)
|
17 |
-
|
18 |
-
# Convert to array and normalize
|
19 |
img_array = np.array(img) / 255.0
|
20 |
-
|
21 |
-
# Expand dimensions to match the input shape of the model
|
22 |
img_array = np.expand_dims(img_array, axis=0)
|
23 |
-
|
24 |
return img_array
|
25 |
|
26 |
# Step 4: Function to make predictions
|
27 |
def predict_image(img):
|
28 |
-
# Preprocess the image
|
29 |
img_array = load_and_preprocess_image(img)
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
39 |
result_label = "Real" if real_confidence > fake_confidence else "Fake"
|
40 |
-
|
41 |
-
# Return results
|
42 |
result_text = f"The model predicts this image is '{result_label}' with {max(real_confidence, fake_confidence):.2f}% confidence."
|
43 |
explanation = f"Real Confidence: {real_confidence:.2f}% | Fake Confidence: {fake_confidence:.2f}%"
|
44 |
-
|
45 |
return result_text, explanation
|
46 |
|
47 |
# Step 5: Define the Gradio interface
|
@@ -49,7 +43,8 @@ interface = gr.Interface(
|
|
49 |
fn=predict_image,
|
50 |
inputs=gr.Image(type="pil", label="Upload an Image"),
|
51 |
outputs=[
|
52 |
-
gr.Textbox(label="Prediction Result")
|
|
|
53 |
],
|
54 |
title="Deepfake Image Detector",
|
55 |
description="Upload an image, and the model will classify whether it is a 'real' or 'fake' image using deep learning."
|
@@ -58,3 +53,4 @@ interface = gr.Interface(
|
|
58 |
# Step 6: Launch the app
|
59 |
if __name__ == "__main__":
|
60 |
interface.launch()
|
|
|
|
12 |
|
13 |
# Step 3: Function to preprocess the input image
|
14 |
def load_and_preprocess_image(img, target_size=(256, 256)):
|
|
|
15 |
img = img.resize(target_size)
|
|
|
|
|
16 |
img_array = np.array(img) / 255.0
|
|
|
|
|
17 |
img_array = np.expand_dims(img_array, axis=0)
|
|
|
18 |
return img_array
|
19 |
|
20 |
# Step 4: Function to make predictions
|
21 |
def predict_image(img):
|
|
|
22 |
img_array = load_and_preprocess_image(img)
|
23 |
+
prediction = model.predict(img_array)
|
24 |
+
|
25 |
+
# Determine output shape and extract confidence
|
26 |
+
if prediction.shape[-1] == 1:
|
27 |
+
prob_real = prediction[0][0]
|
28 |
+
elif prediction.shape[-1] == 2:
|
29 |
+
prob_real = prediction[0][1] # Assuming second index = "real"
|
30 |
+
else:
|
31 |
+
return "Model output shape not recognized.", "Cannot compute prediction."
|
32 |
+
|
33 |
+
real_confidence = prob_real * 100
|
34 |
+
fake_confidence = (1 - prob_real) * 100
|
35 |
result_label = "Real" if real_confidence > fake_confidence else "Fake"
|
36 |
+
|
|
|
37 |
result_text = f"The model predicts this image is '{result_label}' with {max(real_confidence, fake_confidence):.2f}% confidence."
|
38 |
explanation = f"Real Confidence: {real_confidence:.2f}% | Fake Confidence: {fake_confidence:.2f}%"
|
|
|
39 |
return result_text, explanation
|
40 |
|
41 |
# Step 5: Define the Gradio interface
|
|
|
43 |
fn=predict_image,
|
44 |
inputs=gr.Image(type="pil", label="Upload an Image"),
|
45 |
outputs=[
|
46 |
+
gr.Textbox(label="Prediction Result"),
|
47 |
+
gr.Textbox(label="Confidence Scores")
|
48 |
],
|
49 |
title="Deepfake Image Detector",
|
50 |
description="Upload an image, and the model will classify whether it is a 'real' or 'fake' image using deep learning."
|
|
|
53 |
# Step 6: Launch the app
|
54 |
if __name__ == "__main__":
|
55 |
interface.launch()
|
56 |
+
|