Spaces:
Runtime error
Runtime error
File size: 1,194 Bytes
16412a7 8bb41bb 16412a7 2c5eccf 8bb41bb 16412a7 14a5752 16412a7 be51d5d 16412a7 be51d5d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import streamlit as st
from transformers import pipeline
access = "hf_"
token = "hhbFNpjKohezoexWMlyPUpvJQLWlaFhJaa"
# Load the text classification model pipeline
analysis = pipeline("text-classification", model='ZephyruSalsify/FinNews_SentimentAnalysis')
classification = pipeline("text-classification", model="nickmuchi/finbert-tone-finetuned-finance-topic-classification", token=access+token)
st.set_page_config(page_title="Financial News Analysis", page_icon="♕")
# Streamlit application layout
st.title("Financial News Analysis")
st.write("Analyze corresponding Topic and Trend for Financial News!")
st.image("./Fin.jpg", use_column_width = True)
# Text input for user to enter the text
text = st.text_area("Enter the Financial News", "")
# Perform text classification when the user clicks the "Classify" button
if st.button("Analyze"):
# Perform text analysis on the input text
results_1 = analysis(text)[0]
results_2 = classification(text)[0]
st.write("Financial Text:", text)
st.write("Trend:", results_1["label"])
st.write("Trend_Score:", results_1["score"])
st.write("Finance Topic:", results_2["label"])
st.write("Topic_Score:", results_2["score"]) |