File size: 2,552 Bytes
6a0ec6a
 
6c37e10
6a0ec6a
4f04c00
6a0ec6a
79f396e
6c37e10
 
042246b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a0ec6a
7306c07
 
 
 
edb7e14
7306c07
 
edb7e14
7306c07
edb7e14
7306c07
 
 
 
edb7e14
 
 
1f7ee11
 
 
 
7306c07
edb7e14
 
 
 
 
1f7ee11
 
 
 
 
 
 
 
 
 
 
 
6a0ec6a
0380e03
6a0ec6a
7306c07
6a0ec6a
7306c07
 
c6d6658
6a0ec6a
 
 
0380e03
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
import os
import gradio as gr
from sqlalchemy import text
from smolagents import tool, CodeAgent, HfApiModel
import spaces

# Import the persistent database
from database import engine, receipts

@tool
def sql_engine(query: str) -> str:
    """
    Executes an SQL query on the 'receipts' table and returns formatted results.
    
    Args:
        query: The SQL query to execute.

    Returns:
        Query result as a formatted string.
    """
    try:
        with engine.connect() as con:
            rows = con.execute(text(query)).fetchall()

        if not rows:
            return "No results found."

        # Convert results into a readable string format
        return "\n".join([", ".join(map(str, row)) for row in rows])

    except Exception as e:
        return f"Error: {str(e)}"

@tool
def query_sql(user_query: str) -> str:
    """
    Converts natural language input to an SQL query using CodeAgent
    and returns the execution results.

    Args:
        user_query: The user's request in natural language.

    Returns:
        The query result from the database as a formatted string.
    """
    # Generate SQL from natural language
    generated_sql = agent.run(f"Convert this request into SQL: {user_query}")

    # Log the generated SQL for debugging
    print(f"Generated SQL: {generated_sql}")

    # Ensure we only execute valid SQL queries
    if not generated_sql.lower().startswith(("select", "show", "pragma")):
        return "Error: Only SELECT queries are allowed."

    # Execute the SQL query and return the result
    result = sql_engine(generated_sql)

    # Log the result for debugging
    print(f"SQL Query Result: {result}")

    # If the result is empty, return a friendly message
    if not result.strip():
        return "No results found."

    return result  # Return clean result, avoiding passing raw SQL back

# Initialize CodeAgent to generate SQL queries from natural language
agent = CodeAgent(
    tools=[sql_engine],  # Ensure sql_engine is properly registered
    model=HfApiModel(model_id="Qwen/Qwen2.5-Coder-32B-Instruct"),
)

# Define Gradio interface
demo = gr.Interface(
    fn=query_sql,
    inputs=gr.Textbox(label="Enter your query in plain English"),
    outputs=gr.Textbox(label="Query Result"),
    title="Natural Language to SQL Executor",
    description="Enter a plain English request, and the AI will generate an SQL query and return the results.",
    flagging_mode="never",
)

if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", server_port=7860, share=True)