import gradio as gr from transformers import pipeline # Load models transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base") summarizer = pipeline("summarization", model="facebook/bart-large-cnn") # Function to process audio def process_audio(audio_file): # Step 1: Transcribe audio transcription = transcriber(audio_file)["text"] # Step 2: Summarize transcription summary = summarizer(transcription, max_length=50, min_length=10, do_sample=False)[0]["summary_text"] return transcription, summary # Gradio Interface interface = gr.Interface( fn=process_audio, inputs=gr.Audio(source="upload", type="filepath", label="Upload Audio File"), outputs=[ gr.Textbox(label="Full Transcription"), gr.Textbox(label="Summary") ], title="Audio Transcription and Summarization", description="Upload an audio file to get a full transcription and a brief summary of its content." ) # Launch the interface interface.launch()