AudioTranscribe / app.py
ZennyKenny's picture
fix upload error
e22e17f verified
raw
history blame
2.66 kB
import gradio as gr
import torch
from transformers import pipeline
import librosa
import soundfile as sf
import spaces
import os
def split_audio(audio_data, sr, chunk_duration=30):
"""Split audio into chunks of chunk_duration seconds."""
chunks = []
for start in range(0, len(audio_data), int(chunk_duration * sr)):
end = start + int(chunk_duration * sr)
chunks.append(audio_data[start:end])
return chunks
def transcribe_long_audio(audio_input, transcriber, chunk_duration=30):
"""Transcribe long audio by splitting into smaller chunks."""
if isinstance(audio_input, str): # File path
audio_data, sr = librosa.load(audio_input, sr=None)
else: # Raw audio data (numpy array)
audio_data, sr = audio_input
chunks = split_audio(audio_data, sr, chunk_duration)
transcriptions = []
for i, chunk in enumerate(chunks):
temp_path = f"temp_chunk_{i}.wav"
sf.write(temp_path, chunk, sr) # Save chunk as WAV
transcription = transcriber(temp_path)["text"]
transcriptions.append(transcription)
os.remove(temp_path) # Cleanup temp files
return " ".join(transcriptions)
@spaces.GPU(duration=3)
def main():
device = 0 if torch.cuda.is_available() else -1
try:
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
except Exception as e:
print(f"Error loading models: {e}")
raise
def process_audio(audio_input):
try:
transcription = transcribe_long_audio(audio_input, transcriber, chunk_duration=30)
summary = summarizer(transcription, max_length=50, min_length=10, do_sample=False)[0]["summary_text"]
return transcription, summary
except Exception as e:
return f"Error processing audio: {e}", ""
with gr.Blocks() as interface:
with gr.Row():
with gr.Column():
# No 'source' argument; recording enabled by default
audio_input = gr.Audio(type="numpy", label="Record or Upload Audio")
process_button = gr.Button("Process Audio")
with gr.Column():
transcription_output = gr.Textbox(label="Full Transcription", lines=10)
summary_output = gr.Textbox(label="Summary", lines=5)
process_button.click(
process_audio,
inputs=[audio_input],
outputs=[transcription_output, summary_output]
)
interface.launch(share=True)
if __name__ == "__main__":
main()