AudioTranscribe / app.py
ZennyKenny's picture
handle oor tuple
db3a36a verified
raw
history blame
3.6 kB
import gradio as gr
import torch
from transformers import pipeline
import librosa
import soundfile as sf
import spaces
import os
def split_audio(audio_data, sr, chunk_duration=30):
"""Split audio into chunks of chunk_duration seconds."""
chunks = []
for start in range(0, len(audio_data), int(chunk_duration * sr)):
end = start + int(chunk_duration * sr)
chunks.append(audio_data[start:end])
return chunks
def transcribe_long_audio(audio_input, transcriber, chunk_duration=30):
"""Transcribe long audio by splitting into smaller chunks."""
try:
# Debugging input type and format
print(f"Audio input type: {type(audio_input)}")
if isinstance(audio_input, tuple): # Recorded audio
print("Processing recorded audio...")
audio_data, sr = audio_input # Unpack raw audio data and sample rate
temp_path = "recorded_audio.wav"
sf.write(temp_path, audio_data, sr) # Save recorded audio as a temporary file
elif isinstance(audio_input, str): # Uploaded file path
print("Processing uploaded audio...")
temp_path = audio_input # Use the file path directly
else:
raise ValueError("Unsupported audio input format.")
# Process the audio file (recorded or uploaded)
audio_data, sr = librosa.load(temp_path, sr=None)
chunks = split_audio(audio_data, sr, chunk_duration)
transcriptions = []
for i, chunk in enumerate(chunks):
chunk_path = f"temp_chunk_{i}.wav"
sf.write(chunk_path, chunk, sr) # Save chunk as WAV
transcription = transcriber(chunk_path)["text"]
transcriptions.append(transcription)
os.remove(chunk_path) # Cleanup temp files
if temp_path == "recorded_audio.wav":
os.remove(temp_path) # Remove the temporary recorded audio file
return " ".join(transcriptions)
except Exception as e:
print(f"Error in transcribe_long_audio: {e}")
return f"Error processing audio: {e}"
@spaces.GPU(duration=3)
def main():
device = 0 if torch.cuda.is_available() else -1
try:
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
except Exception as e:
print(f"Error loading models: {e}")
raise
def process_audio(audio_input):
try:
transcription = transcribe_long_audio(audio_input, transcriber, chunk_duration=30)
summary = summarizer(transcription, max_length=50, min_length=10, do_sample=False)[0]["summary_text"]
return transcription, summary
except Exception as e:
print(f"Error in process_audio: {e}")
return f"Error processing audio: {e}", ""
with gr.Blocks() as interface:
with gr.Row():
with gr.Column():
# Enable recording or file upload
audio_input = gr.Audio(type="numpy", label="Record or Upload Audio")
process_button = gr.Button("Process Audio")
with gr.Column():
transcription_output = gr.Textbox(label="Full Transcription", lines=10)
summary_output = gr.Textbox(label="Summary", lines=5)
process_button.click(
process_audio,
inputs=[audio_input],
outputs=[transcription_output, summary_output]
)
interface.launch(share=True)
if __name__ == "__main__":
main()