AudioTranscribe / app.py
ZennyKenny's picture
add cuda
55f93e7 verified
raw
history blame
1.56 kB
import gradio as gr
import torch
from transformers import pipeline
@spaces.GPU(duration=60)
# Check if GPU is available; fallback to CPU if not
# device = 0 if torch.cuda.is_available() else -1
try:
# Load models with error handling
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=cuda)
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
except Exception as e:
print(f"Error loading models: {e}")
raise
# Function to process audio
def process_audio(audio_file):
try:
# Transcribe the audio
transcription = transcriber(audio_file)["text"]
# Summarize the transcription
summary = summarizer(transcription, max_length=50, min_length=10, do_sample=False)[0]["summary_text"]
return transcription, summary
except Exception as e:
return f"Error processing audio: {e}", ""
# Gradio Interface with Horizontal Layout
with gr.Blocks() as interface:
with gr.Row():
with gr.Column():
audio_input = gr.Audio(type="filepath", label="Upload Audio File")
process_button = gr.Button("Process Audio")
with gr.Column():
transcription_output = gr.Textbox(label="Full Transcription", lines=10)
summary_output = gr.Textbox(label="Summary", lines=5)
process_button.click(
process_audio,
inputs=[audio_input],
outputs=[transcription_output, summary_output]
)
# Launch the interface with optional public sharing
interface.launch(share=True)