Spaces:
Running
Running
File size: 1,010 Bytes
bd97be7 b40af2a bd97be7 b40af2a bd97be7 b40af2a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import gradio as gr
from transformers import pipeline
# Load models
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base")
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# Function to process audio
def process_audio(audio_file):
# Step 1: Transcribe audio
transcription = transcriber(audio_file)["text"]
# Step 2: Summarize transcription
summary = summarizer(transcription, max_length=50, min_length=10, do_sample=False)[0]["summary_text"]
return transcription, summary
# Gradio Interface
interface = gr.Interface(
fn=process_audio,
inputs=gr.Audio(source="upload", type="filepath", label="Upload Audio File"),
outputs=[
gr.Textbox(label="Full Transcription"),
gr.Textbox(label="Summary")
],
title="Audio Transcription and Summarization",
description="Upload an audio file to get a full transcription and a brief summary of its content."
)
# Launch the interface
interface.launch()
|