|
import spaces |
|
import gradio as gr |
|
import torch |
|
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer |
|
from threading import Thread |
|
|
|
model_path = 'sail/Sailor-7B-Chat' |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16) |
|
|
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
model = model.to(device) |
|
|
|
|
|
class StopOnTokens(StoppingCriteria): |
|
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: |
|
stop_ids = [151645] |
|
for stop_id in stop_ids: |
|
if input_ids[0][-1] == stop_id: |
|
return True |
|
return False |
|
|
|
|
|
system_role= 'system' |
|
user_role = 'question' |
|
assistant_role = "answer" |
|
|
|
sft_start_token = "<|im_start|>" |
|
sft_end_token = "<|im_end|>" |
|
ct_end_token = "<|endoftext|>" |
|
|
|
system_prompt= \ |
|
'You are an AI assistant named Sailor created by Sea AI Lab. \ |
|
Your answer should be friendly, unbiased, faithful, informative and detailed.' |
|
system_prompt = f"<|im_start|>{system_role}\n{system_prompt}<|im_end|>" |
|
|
|
|
|
|
|
@spaces.GPU() |
|
def predict(message, history): |
|
|
|
history_transformer_format = history + [[message, ""]] |
|
stop = StopOnTokens() |
|
|
|
|
|
messages = system_prompt + sft_end_token.join([sft_end_token.join([f"\n{sft_start_token}{user_role}\n" + item[0], f"\n{sft_start_token}{assistant_role}\n" + item[1]]) |
|
for item in history_transformer_format]) |
|
model_inputs = tokenizer([messages], return_tensors="pt").to(device) |
|
streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True) |
|
generate_kwargs = dict( |
|
model_inputs, |
|
streamer=streamer, |
|
max_new_tokens=512, |
|
do_sample=True, |
|
top_p= 0.75, |
|
top_k= 60, |
|
temperature=0.2, |
|
num_beams=1, |
|
stopping_criteria=StoppingCriteriaList([stop]), |
|
repetition_penalty=1.1, |
|
) |
|
t = Thread(target=model.generate, kwargs=generate_kwargs) |
|
t.start() |
|
partial_message = "" |
|
for new_token in streamer: |
|
partial_message += new_token |
|
if sft_end_token in partial_message: |
|
break |
|
yield partial_message |
|
|
|
|
|
css = """ |
|
full-height { |
|
height: 100%; |
|
} |
|
""" |
|
|
|
prompt_examples = [ |
|
'How to cook a fish?', |
|
'Cara memanggang ikan', |
|
'วิธีย่างปลา', |
|
'Cách nướng cá' |
|
] |
|
|
|
placeholder = """ |
|
<div style="opacity: 0.5;"> |
|
<img src="https://raw.githubusercontent.com/sail-sg/sailor-llm/main/misc/banner.jpg" style="width:30%;"> |
|
<br>Sailor models are designed to understand and generate text across diverse linguistic landscapes of these SEA regions: |
|
<br>🇮🇩Indonesian, 🇹🇭Thai, 🇻🇳Vietnamese, 🇲🇾Malay, and 🇱🇦Lao. |
|
</div> |
|
""" |
|
|
|
chatbot = gr.Chatbot(label='Sailor', placeholder=placeholder) |
|
with gr.Blocks(theme=gr.themes.Soft(), fill_height=True) as demo: |
|
|
|
gr.Markdown("""<p align="center"><img src="https://github.com/sail-sg/sailor-llm/raw/main/misc/wide_sailor_banner.jpg" style="height: 110px"/><p>""") |
|
gr.ChatInterface(predict, chatbot=chatbot, fill_height=True, examples=prompt_examples, css=css) |
|
|
|
demo.launch() |