File size: 4,675 Bytes
b262a14
b21b992
b262a14
 
 
34d79f8
b21b992
ec07b24
b262a14
 
 
 
 
 
 
 
 
 
 
 
ec07b24
b262a14
 
 
 
 
 
 
0298010
 
b262a14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0122097
34d79f8
 
bf14f3d
34d79f8
 
 
 
 
 
 
 
 
 
 
 
 
25a236c
34d79f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b262a14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0298010
b262a14
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import spaces
import gradio as gr
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer
from threading import Thread
import traceback

model_path = 'infly/OpenCoder-8B-Instruct'

# Loading the tokenizer and model from Hugging Face's model hub.
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_path, trust_remote_code=True, torch_dtype=torch.bfloat16)

# using CUDA for an optimal experience
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)

# Defining a custom stopping criteria class for the model's text generation.
class StopOnTokens(StoppingCriteria):
    def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
        stop_ids = [96539]  # IDs of tokens where the generation should stop.
        for stop_id in stop_ids:
            if input_ids[0][-1] == stop_id:  # Checking if the last generated token is a stop token.
                return True
        return False


system_role= 'system'
user_role = 'user'
assistant_role = "assistant"

sft_start_token =  "<|im_start|>"
sft_end_token = "<|im_end|>"
ct_end_token = "<|endoftext|>"

system_prompt= \
'You are an AI assistant named Sailor created by Sea AI Lab. \
Your answer should be friendly, unbiased, faithful, informative and detailed.'
system_prompt = f"<|im_start|>{system_role}\n{system_prompt}<|im_end|>"

# Function to generate model predictions.

@spaces.GPU()
def predict(message, history):
    # history = []
    # history_transformer_format = history + [[message, ""]]
    try:
        stop = StopOnTokens()
    
        # Formatting the input for the model.
        # messages =  system_prompt + sft_end_token.join([sft_end_token.join([f"\n{sft_start_token}{user_role}\n" + item[0], f"\n{sft_start_token}{assistant_role}\n" + item[1]])
        #                     for item in history_transformer_format])
    
        model_messages = []
        print(f'history: {history}')
        for i, item in enumerate(history):
            model_messages.append({"role": user_role, "content": item[0]})
            model_messages.append({"role": assistant_role, "content": item[1]})
    
        model_messages.append({"role": user_role, "content": message})
        
        print(f'model_messages: {model_messages}')
    
        print(f'model_final_inputs: {tokenizer.apply_chat_template(model_messages, add_generation_prompt=True, tokenize=False)}', flush=True)
        model_inputs = tokenizer.apply_chat_template(model_messages, add_generation_prompt=True, return_tensors="pt").to(device)
        # model_inputs = tokenizer([messages], return_tensors="pt").to(device)
        
        streamer = TextIteratorStreamer(tokenizer, timeout=10., skip_prompt=True, skip_special_tokens=True)
        generate_kwargs = dict(
            model_inputs,
            streamer=streamer,
            max_new_tokens=1024,
            do_sample=False,
            # stopping_criteria=StoppingCriteriaList([stop])
        )
        t = Thread(target=model.generate, kwargs=generate_kwargs)
        t.start()  # Starting the generation in a separate thread.
        partial_message = ""
        for new_token in streamer:
            partial_message += new_token
            if sft_end_token in partial_message:  # Breaking the loop if the stop token is generated.
                break
            yield partial_message

    except Exception as e:
        print(traceback.format_exc())


css = """
full-height {
    height: 100%;
}
"""

prompt_examples = [
    'How to cook a fish?',
    'Cara memanggang ikan',
    'วิธีย่างปลา',
    'Cách nướng cá'
]

placeholder = """
<div style="opacity: 0.5;">
    <img src="https://raw.githubusercontent.com/sail-sg/sailor-llm/main/misc/banner.jpg" style="width:30%;">
    <br>Sailor models are designed to understand and generate text across diverse linguistic landscapes of these SEA regions:
    <br>🇮🇩Indonesian, 🇹🇭Thai, 🇻🇳Vietnamese, 🇲🇾Malay, and 🇱🇦Lao.
</div>
"""

chatbot = gr.Chatbot(label='OpenCoder', placeholder=None) 
with gr.Blocks(theme=gr.themes.Soft(), fill_height=True) as demo:
    # gr.Markdown("""<center><font size=8>Sailor-Chat Bot⚓</center>""")
    gr.Markdown("""<p align="center"><img src="https://github.com/sail-sg/sailor-llm/raw/main/misc/wide_sailor_banner.jpg" style="height: 110px"/><p>""")
    gr.ChatInterface(predict, chatbot=chatbot, fill_height=True, examples=prompt_examples, css=css)

    demo.launch()  # Launching the web interface.