Spaces:
Sleeping
Sleeping
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
import getpass | |
from typing import List | |
import cv2 | |
import numpy as np | |
import pandas as pd | |
from ultralytics.data.augment import LetterBox | |
from ultralytics.utils import LOGGER as logger | |
from ultralytics.utils import SETTINGS | |
from ultralytics.utils.checks import check_requirements | |
from ultralytics.utils.ops import xyxy2xywh | |
from ultralytics.utils.plotting import plot_images | |
def get_table_schema(vector_size): | |
"""Extracts and returns the schema of a database table.""" | |
from lancedb.pydantic import LanceModel, Vector | |
class Schema(LanceModel): | |
im_file: str | |
labels: List[str] | |
cls: List[int] | |
bboxes: List[List[float]] | |
masks: List[List[List[int]]] | |
keypoints: List[List[List[float]]] | |
vector: Vector(vector_size) | |
return Schema | |
def get_sim_index_schema(): | |
"""Returns a LanceModel schema for a database table with specified vector size.""" | |
from lancedb.pydantic import LanceModel | |
class Schema(LanceModel): | |
idx: int | |
im_file: str | |
count: int | |
sim_im_files: List[str] | |
return Schema | |
def sanitize_batch(batch, dataset_info): | |
"""Sanitizes input batch for inference, ensuring correct format and dimensions.""" | |
batch["cls"] = batch["cls"].flatten().int().tolist() | |
box_cls_pair = sorted(zip(batch["bboxes"].tolist(), batch["cls"]), key=lambda x: x[1]) | |
batch["bboxes"] = [box for box, _ in box_cls_pair] | |
batch["cls"] = [cls for _, cls in box_cls_pair] | |
batch["labels"] = [dataset_info["names"][i] for i in batch["cls"]] | |
batch["masks"] = batch["masks"].tolist() if "masks" in batch else [[[]]] | |
batch["keypoints"] = batch["keypoints"].tolist() if "keypoints" in batch else [[[]]] | |
return batch | |
def plot_query_result(similar_set, plot_labels=True): | |
""" | |
Plot images from the similar set. | |
Args: | |
similar_set (list): Pyarrow or pandas object containing the similar data points | |
plot_labels (bool): Whether to plot labels or not | |
""" | |
similar_set = ( | |
similar_set.to_dict(orient="list") if isinstance(similar_set, pd.DataFrame) else similar_set.to_pydict() | |
) | |
empty_masks = [[[]]] | |
empty_boxes = [[]] | |
images = similar_set.get("im_file", []) | |
bboxes = similar_set.get("bboxes", []) if similar_set.get("bboxes") is not empty_boxes else [] | |
masks = similar_set.get("masks") if similar_set.get("masks")[0] != empty_masks else [] | |
kpts = similar_set.get("keypoints") if similar_set.get("keypoints")[0] != empty_masks else [] | |
cls = similar_set.get("cls", []) | |
plot_size = 640 | |
imgs, batch_idx, plot_boxes, plot_masks, plot_kpts = [], [], [], [], [] | |
for i, imf in enumerate(images): | |
im = cv2.imread(imf) | |
im = cv2.cvtColor(im, cv2.COLOR_BGR2RGB) | |
h, w = im.shape[:2] | |
r = min(plot_size / h, plot_size / w) | |
imgs.append(LetterBox(plot_size, center=False)(image=im).transpose(2, 0, 1)) | |
if plot_labels: | |
if len(bboxes) > i and len(bboxes[i]) > 0: | |
box = np.array(bboxes[i], dtype=np.float32) | |
box[:, [0, 2]] *= r | |
box[:, [1, 3]] *= r | |
plot_boxes.append(box) | |
if len(masks) > i and len(masks[i]) > 0: | |
mask = np.array(masks[i], dtype=np.uint8)[0] | |
plot_masks.append(LetterBox(plot_size, center=False)(image=mask)) | |
if len(kpts) > i and kpts[i] is not None: | |
kpt = np.array(kpts[i], dtype=np.float32) | |
kpt[:, :, :2] *= r | |
plot_kpts.append(kpt) | |
batch_idx.append(np.ones(len(np.array(bboxes[i], dtype=np.float32))) * i) | |
imgs = np.stack(imgs, axis=0) | |
masks = np.stack(plot_masks, axis=0) if plot_masks else np.zeros(0, dtype=np.uint8) | |
kpts = np.concatenate(plot_kpts, axis=0) if plot_kpts else np.zeros((0, 51), dtype=np.float32) | |
boxes = xyxy2xywh(np.concatenate(plot_boxes, axis=0)) if plot_boxes else np.zeros(0, dtype=np.float32) | |
batch_idx = np.concatenate(batch_idx, axis=0) | |
cls = np.concatenate([np.array(c, dtype=np.int32) for c in cls], axis=0) | |
return plot_images( | |
imgs, batch_idx, cls, bboxes=boxes, masks=masks, kpts=kpts, max_subplots=len(images), save=False, threaded=False | |
) | |
def prompt_sql_query(query): | |
"""Plots images with optional labels from a similar data set.""" | |
check_requirements("openai>=1.6.1") | |
from openai import OpenAI | |
if not SETTINGS["openai_api_key"]: | |
logger.warning("OpenAI API key not found in settings. Please enter your API key below.") | |
openai_api_key = getpass.getpass("OpenAI API key: ") | |
SETTINGS.update({"openai_api_key": openai_api_key}) | |
openai = OpenAI(api_key=SETTINGS["openai_api_key"]) | |
messages = [ | |
{ | |
"role": "system", | |
"content": """ | |
You are a helpful data scientist proficient in SQL. You need to output exactly one SQL query based on | |
the following schema and a user request. You only need to output the format with fixed selection | |
statement that selects everything from "'table'", like `SELECT * from 'table'` | |
Schema: | |
im_file: string not null | |
labels: list<item: string> not null | |
child 0, item: string | |
cls: list<item: int64> not null | |
child 0, item: int64 | |
bboxes: list<item: list<item: double>> not null | |
child 0, item: list<item: double> | |
child 0, item: double | |
masks: list<item: list<item: list<item: int64>>> not null | |
child 0, item: list<item: list<item: int64>> | |
child 0, item: list<item: int64> | |
child 0, item: int64 | |
keypoints: list<item: list<item: list<item: double>>> not null | |
child 0, item: list<item: list<item: double>> | |
child 0, item: list<item: double> | |
child 0, item: double | |
vector: fixed_size_list<item: float>[256] not null | |
child 0, item: float | |
Some details about the schema: | |
- the "labels" column contains the string values like 'person' and 'dog' for the respective objects | |
in each image | |
- the "cls" column contains the integer values on these classes that map them the labels | |
Example of a correct query: | |
request - Get all data points that contain 2 or more people and at least one dog | |
correct query- | |
SELECT * FROM 'table' WHERE ARRAY_LENGTH(cls) >= 2 AND ARRAY_LENGTH(FILTER(labels, x -> x = 'person')) >= 2 AND ARRAY_LENGTH(FILTER(labels, x -> x = 'dog')) >= 1; | |
""", | |
}, | |
{"role": "user", "content": f"{query}"}, | |
] | |
response = openai.chat.completions.create(model="gpt-3.5-turbo", messages=messages) | |
return response.choices[0].message.content | |