Spaces:
Running
Running
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
import contextlib | |
from itertools import repeat | |
from multiprocessing.pool import ThreadPool | |
from pathlib import Path | |
import cv2 | |
import numpy as np | |
import torch | |
import torchvision | |
from PIL import Image | |
from ultralytics.utils import LOCAL_RANK, NUM_THREADS, TQDM, colorstr, is_dir_writeable | |
from ultralytics.utils.ops import resample_segments | |
from .augment import Compose, Format, Instances, LetterBox, classify_augmentations, classify_transforms, v8_transforms | |
from .base import BaseDataset | |
from .utils import HELP_URL, LOGGER, get_hash, img2label_paths, verify_image, verify_image_label | |
# Ultralytics dataset *.cache version, >= 1.0.0 for YOLOv8 | |
DATASET_CACHE_VERSION = "1.0.3" | |
class YOLODataset(BaseDataset): | |
""" | |
Dataset class for loading object detection and/or segmentation labels in YOLO format. | |
Args: | |
data (dict, optional): A dataset YAML dictionary. Defaults to None. | |
task (str): An explicit arg to point current task, Defaults to 'detect'. | |
Returns: | |
(torch.utils.data.Dataset): A PyTorch dataset object that can be used for training an object detection model. | |
""" | |
def __init__(self, *args, data=None, task="detect", **kwargs): | |
"""Initializes the YOLODataset with optional configurations for segments and keypoints.""" | |
self.use_segments = task == "segment" | |
self.use_keypoints = task == "pose" | |
self.use_obb = task == "obb" | |
self.data = data | |
assert not (self.use_segments and self.use_keypoints), "Can not use both segments and keypoints." | |
super().__init__(*args, **kwargs) | |
def cache_labels(self, path=Path("./labels.cache")): | |
""" | |
Cache dataset labels, check images and read shapes. | |
Args: | |
path (Path): Path where to save the cache file. Default is Path('./labels.cache'). | |
Returns: | |
(dict): labels. | |
""" | |
x = {"labels": []} | |
nm, nf, ne, nc, msgs = 0, 0, 0, 0, [] # number missing, found, empty, corrupt, messages | |
desc = f"{self.prefix}Scanning {path.parent / path.stem}..." | |
total = len(self.im_files) | |
nkpt, ndim = self.data.get("kpt_shape", (0, 0)) | |
if self.use_keypoints and (nkpt <= 0 or ndim not in (2, 3)): | |
raise ValueError( | |
"'kpt_shape' in data.yaml missing or incorrect. Should be a list with [number of " | |
"keypoints, number of dims (2 for x,y or 3 for x,y,visible)], i.e. 'kpt_shape: [17, 3]'" | |
) | |
with ThreadPool(NUM_THREADS) as pool: | |
results = pool.imap( | |
func=verify_image_label, | |
iterable=zip( | |
self.im_files, | |
self.label_files, | |
repeat(self.prefix), | |
repeat(self.use_keypoints), | |
repeat(len(self.data["names"])), | |
repeat(nkpt), | |
repeat(ndim), | |
), | |
) | |
pbar = TQDM(results, desc=desc, total=total) | |
for im_file, lb, shape, segments, keypoint, nm_f, nf_f, ne_f, nc_f, msg in pbar: | |
nm += nm_f | |
nf += nf_f | |
ne += ne_f | |
nc += nc_f | |
if im_file: | |
x["labels"].append( | |
dict( | |
im_file=im_file, | |
shape=shape, | |
cls=lb[:, 0:1], # n, 1 | |
bboxes=lb[:, 1:], # n, 4 | |
segments=segments, | |
keypoints=keypoint, | |
normalized=True, | |
bbox_format="xywh", | |
) | |
) | |
if msg: | |
msgs.append(msg) | |
pbar.desc = f"{desc} {nf} images, {nm + ne} backgrounds, {nc} corrupt" | |
pbar.close() | |
if msgs: | |
LOGGER.info("\n".join(msgs)) | |
if nf == 0: | |
LOGGER.warning(f"{self.prefix}WARNING ⚠️ No labels found in {path}. {HELP_URL}") | |
x["hash"] = get_hash(self.label_files + self.im_files) | |
x["results"] = nf, nm, ne, nc, len(self.im_files) | |
x["msgs"] = msgs # warnings | |
save_dataset_cache_file(self.prefix, path, x) | |
return x | |
def get_labels(self): | |
"""Returns dictionary of labels for YOLO training.""" | |
self.label_files = img2label_paths(self.im_files) | |
cache_path = Path(self.label_files[0]).parent.with_suffix(".cache") | |
try: | |
cache, exists = load_dataset_cache_file(cache_path), True # attempt to load a *.cache file | |
assert cache["version"] == DATASET_CACHE_VERSION # matches current version | |
assert cache["hash"] == get_hash(self.label_files + self.im_files) # identical hash | |
except (FileNotFoundError, AssertionError, AttributeError): | |
cache, exists = self.cache_labels(cache_path), False # run cache ops | |
# Display cache | |
nf, nm, ne, nc, n = cache.pop("results") # found, missing, empty, corrupt, total | |
if exists and LOCAL_RANK in (-1, 0): | |
d = f"Scanning {cache_path}... {nf} images, {nm + ne} backgrounds, {nc} corrupt" | |
TQDM(None, desc=self.prefix + d, total=n, initial=n) # display results | |
if cache["msgs"]: | |
LOGGER.info("\n".join(cache["msgs"])) # display warnings | |
# Read cache | |
[cache.pop(k) for k in ("hash", "version", "msgs")] # remove items | |
labels = cache["labels"] | |
if not labels: | |
LOGGER.warning(f"WARNING ⚠️ No images found in {cache_path}, training may not work correctly. {HELP_URL}") | |
self.im_files = [lb["im_file"] for lb in labels] # update im_files | |
# Check if the dataset is all boxes or all segments | |
lengths = ((len(lb["cls"]), len(lb["bboxes"]), len(lb["segments"])) for lb in labels) | |
len_cls, len_boxes, len_segments = (sum(x) for x in zip(*lengths)) | |
if len_segments and len_boxes != len_segments: | |
LOGGER.warning( | |
f"WARNING ⚠️ Box and segment counts should be equal, but got len(segments) = {len_segments}, " | |
f"len(boxes) = {len_boxes}. To resolve this only boxes will be used and all segments will be removed. " | |
"To avoid this please supply either a detect or segment dataset, not a detect-segment mixed dataset." | |
) | |
for lb in labels: | |
lb["segments"] = [] | |
if len_cls == 0: | |
LOGGER.warning(f"WARNING ⚠️ No labels found in {cache_path}, training may not work correctly. {HELP_URL}") | |
return labels | |
def build_transforms(self, hyp=None): | |
"""Builds and appends transforms to the list.""" | |
if self.augment: | |
hyp.mosaic = hyp.mosaic if self.augment and not self.rect else 0.0 | |
hyp.mixup = hyp.mixup if self.augment and not self.rect else 0.0 | |
transforms = v8_transforms(self, self.imgsz, hyp) | |
else: | |
transforms = Compose([LetterBox(new_shape=(self.imgsz, self.imgsz), scaleup=False)]) | |
transforms.append( | |
Format( | |
bbox_format="xywh", | |
normalize=True, | |
return_mask=self.use_segments, | |
return_keypoint=self.use_keypoints, | |
return_obb=self.use_obb, | |
batch_idx=True, | |
mask_ratio=hyp.mask_ratio, | |
mask_overlap=hyp.overlap_mask, | |
bgr=hyp.bgr if self.augment else 0.0, # only affect training. | |
) | |
) | |
return transforms | |
def close_mosaic(self, hyp): | |
"""Sets mosaic, copy_paste and mixup options to 0.0 and builds transformations.""" | |
hyp.mosaic = 0.0 # set mosaic ratio=0.0 | |
hyp.copy_paste = 0.0 # keep the same behavior as previous v8 close-mosaic | |
hyp.mixup = 0.0 # keep the same behavior as previous v8 close-mosaic | |
self.transforms = self.build_transforms(hyp) | |
def update_labels_info(self, label): | |
""" | |
Custom your label format here. | |
Note: | |
cls is not with bboxes now, classification and semantic segmentation need an independent cls label | |
Can also support classification and semantic segmentation by adding or removing dict keys there. | |
""" | |
bboxes = label.pop("bboxes") | |
segments = label.pop("segments", []) | |
keypoints = label.pop("keypoints", None) | |
bbox_format = label.pop("bbox_format") | |
normalized = label.pop("normalized") | |
# NOTE: do NOT resample oriented boxes | |
segment_resamples = 100 if self.use_obb else 1000 | |
if len(segments) > 0: | |
# list[np.array(1000, 2)] * num_samples | |
# (N, 1000, 2) | |
segments = np.stack(resample_segments(segments, n=segment_resamples), axis=0) | |
else: | |
segments = np.zeros((0, segment_resamples, 2), dtype=np.float32) | |
label["instances"] = Instances(bboxes, segments, keypoints, bbox_format=bbox_format, normalized=normalized) | |
return label | |
def collate_fn(batch): | |
"""Collates data samples into batches.""" | |
new_batch = {} | |
keys = batch[0].keys() | |
values = list(zip(*[list(b.values()) for b in batch])) | |
for i, k in enumerate(keys): | |
value = values[i] | |
if k == "img": | |
value = torch.stack(value, 0) | |
if k in ["masks", "keypoints", "bboxes", "cls", "segments", "obb"]: | |
value = torch.cat(value, 0) | |
new_batch[k] = value | |
new_batch["batch_idx"] = list(new_batch["batch_idx"]) | |
for i in range(len(new_batch["batch_idx"])): | |
new_batch["batch_idx"][i] += i # add target image index for build_targets() | |
new_batch["batch_idx"] = torch.cat(new_batch["batch_idx"], 0) | |
return new_batch | |
# Classification dataloaders ------------------------------------------------------------------------------------------- | |
class ClassificationDataset(torchvision.datasets.ImageFolder): | |
""" | |
Extends torchvision ImageFolder to support YOLO classification tasks, offering functionalities like image | |
augmentation, caching, and verification. It's designed to efficiently handle large datasets for training deep | |
learning models, with optional image transformations and caching mechanisms to speed up training. | |
This class allows for augmentations using both torchvision and Albumentations libraries, and supports caching images | |
in RAM or on disk to reduce IO overhead during training. Additionally, it implements a robust verification process | |
to ensure data integrity and consistency. | |
Attributes: | |
cache_ram (bool): Indicates if caching in RAM is enabled. | |
cache_disk (bool): Indicates if caching on disk is enabled. | |
samples (list): A list of tuples, each containing the path to an image, its class index, path to its .npy cache | |
file (if caching on disk), and optionally the loaded image array (if caching in RAM). | |
torch_transforms (callable): PyTorch transforms to be applied to the images. | |
""" | |
def __init__(self, root, args, augment=False, prefix=""): | |
""" | |
Initialize YOLO object with root, image size, augmentations, and cache settings. | |
Args: | |
root (str): Path to the dataset directory where images are stored in a class-specific folder structure. | |
args (Namespace): Configuration containing dataset-related settings such as image size, augmentation | |
parameters, and cache settings. It includes attributes like `imgsz` (image size), `fraction` (fraction | |
of data to use), `scale`, `fliplr`, `flipud`, `cache` (disk or RAM caching for faster training), | |
`auto_augment`, `hsv_h`, `hsv_s`, `hsv_v`, and `crop_fraction`. | |
augment (bool, optional): Whether to apply augmentations to the dataset. Default is False. | |
prefix (str, optional): Prefix for logging and cache filenames, aiding in dataset identification and | |
debugging. Default is an empty string. | |
""" | |
super().__init__(root=root) | |
if augment and args.fraction < 1.0: # reduce training fraction | |
self.samples = self.samples[: round(len(self.samples) * args.fraction)] | |
self.prefix = colorstr(f"{prefix}: ") if prefix else "" | |
self.cache_ram = args.cache is True or args.cache == "ram" # cache images into RAM | |
self.cache_disk = args.cache == "disk" # cache images on hard drive as uncompressed *.npy files | |
self.samples = self.verify_images() # filter out bad images | |
self.samples = [list(x) + [Path(x[0]).with_suffix(".npy"), None] for x in self.samples] # file, index, npy, im | |
scale = (1.0 - args.scale, 1.0) # (0.08, 1.0) | |
self.torch_transforms = ( | |
classify_augmentations( | |
size=args.imgsz, | |
scale=scale, | |
hflip=args.fliplr, | |
vflip=args.flipud, | |
erasing=args.erasing, | |
auto_augment=args.auto_augment, | |
hsv_h=args.hsv_h, | |
hsv_s=args.hsv_s, | |
hsv_v=args.hsv_v, | |
) | |
if augment | |
else classify_transforms(size=args.imgsz, crop_fraction=args.crop_fraction) | |
) | |
def __getitem__(self, i): | |
"""Returns subset of data and targets corresponding to given indices.""" | |
f, j, fn, im = self.samples[i] # filename, index, filename.with_suffix('.npy'), image | |
if self.cache_ram and im is None: | |
im = self.samples[i][3] = cv2.imread(f) | |
elif self.cache_disk: | |
if not fn.exists(): # load npy | |
np.save(fn.as_posix(), cv2.imread(f), allow_pickle=False) | |
im = np.load(fn) | |
else: # read image | |
im = cv2.imread(f) # BGR | |
# Convert NumPy array to PIL image | |
im = Image.fromarray(cv2.cvtColor(im, cv2.COLOR_BGR2RGB)) | |
sample = self.torch_transforms(im) | |
return {"img": sample, "cls": j} | |
def __len__(self) -> int: | |
"""Return the total number of samples in the dataset.""" | |
return len(self.samples) | |
def verify_images(self): | |
"""Verify all images in dataset.""" | |
desc = f"{self.prefix}Scanning {self.root}..." | |
path = Path(self.root).with_suffix(".cache") # *.cache file path | |
with contextlib.suppress(FileNotFoundError, AssertionError, AttributeError): | |
cache = load_dataset_cache_file(path) # attempt to load a *.cache file | |
assert cache["version"] == DATASET_CACHE_VERSION # matches current version | |
assert cache["hash"] == get_hash([x[0] for x in self.samples]) # identical hash | |
nf, nc, n, samples = cache.pop("results") # found, missing, empty, corrupt, total | |
if LOCAL_RANK in (-1, 0): | |
d = f"{desc} {nf} images, {nc} corrupt" | |
TQDM(None, desc=d, total=n, initial=n) | |
if cache["msgs"]: | |
LOGGER.info("\n".join(cache["msgs"])) # display warnings | |
return samples | |
# Run scan if *.cache retrieval failed | |
nf, nc, msgs, samples, x = 0, 0, [], [], {} | |
with ThreadPool(NUM_THREADS) as pool: | |
results = pool.imap(func=verify_image, iterable=zip(self.samples, repeat(self.prefix))) | |
pbar = TQDM(results, desc=desc, total=len(self.samples)) | |
for sample, nf_f, nc_f, msg in pbar: | |
if nf_f: | |
samples.append(sample) | |
if msg: | |
msgs.append(msg) | |
nf += nf_f | |
nc += nc_f | |
pbar.desc = f"{desc} {nf} images, {nc} corrupt" | |
pbar.close() | |
if msgs: | |
LOGGER.info("\n".join(msgs)) | |
x["hash"] = get_hash([x[0] for x in self.samples]) | |
x["results"] = nf, nc, len(samples), samples | |
x["msgs"] = msgs # warnings | |
save_dataset_cache_file(self.prefix, path, x) | |
return samples | |
def load_dataset_cache_file(path): | |
"""Load an Ultralytics *.cache dictionary from path.""" | |
import gc | |
gc.disable() # reduce pickle load time https://github.com/ultralytics/ultralytics/pull/1585 | |
cache = np.load(str(path), allow_pickle=True).item() # load dict | |
gc.enable() | |
return cache | |
def save_dataset_cache_file(prefix, path, x): | |
"""Save an Ultralytics dataset *.cache dictionary x to path.""" | |
x["version"] = DATASET_CACHE_VERSION # add cache version | |
if is_dir_writeable(path.parent): | |
if path.exists(): | |
path.unlink() # remove *.cache file if exists | |
np.save(str(path), x) # save cache for next time | |
path.with_suffix(".cache.npy").rename(path) # remove .npy suffix | |
LOGGER.info(f"{prefix}New cache created: {path}") | |
else: | |
LOGGER.warning(f"{prefix}WARNING ⚠️ Cache directory {path.parent} is not writeable, cache not saved.") | |
# TODO: support semantic segmentation | |
class SemanticDataset(BaseDataset): | |
""" | |
Semantic Segmentation Dataset. | |
This class is responsible for handling datasets used for semantic segmentation tasks. It inherits functionalities | |
from the BaseDataset class. | |
Note: | |
This class is currently a placeholder and needs to be populated with methods and attributes for supporting | |
semantic segmentation tasks. | |
""" | |
def __init__(self): | |
"""Initialize a SemanticDataset object.""" | |
super().__init__() | |