Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
import subprocess | |
import pytest | |
from ultralytics.utils import ASSETS, WEIGHTS_DIR, checks | |
CUDA_IS_AVAILABLE = checks.cuda_is_available() | |
CUDA_DEVICE_COUNT = checks.cuda_device_count() | |
TASK_ARGS = [ | |
("detect", "yolov8n", "coco8.yaml"), | |
("segment", "yolov8n-seg", "coco8-seg.yaml"), | |
("classify", "yolov8n-cls", "imagenet10"), | |
("pose", "yolov8n-pose", "coco8-pose.yaml"), | |
("obb", "yolov8n-obb", "dota8.yaml"), | |
] # (task, model, data) | |
EXPORT_ARGS = [ | |
("yolov8n", "torchscript"), | |
("yolov8n-seg", "torchscript"), | |
("yolov8n-cls", "torchscript"), | |
("yolov8n-pose", "torchscript"), | |
("yolov8n-obb", "torchscript"), | |
] # (model, format) | |
def run(cmd): | |
"""Execute a shell command using subprocess.""" | |
subprocess.run(cmd.split(), check=True) | |
def test_special_modes(): | |
"""Test various special command modes of YOLO.""" | |
run("yolo help") | |
run("yolo checks") | |
run("yolo version") | |
run("yolo settings reset") | |
run("yolo cfg") | |
def test_train(task, model, data): | |
"""Test YOLO training for a given task, model, and data.""" | |
run(f"yolo train {task} model={model}.yaml data={data} imgsz=32 epochs=1 cache=disk") | |
def test_val(task, model, data): | |
"""Test YOLO validation for a given task, model, and data.""" | |
run(f"yolo val {task} model={WEIGHTS_DIR / model}.pt data={data} imgsz=32 save_txt save_json") | |
def test_predict(task, model, data): | |
"""Test YOLO prediction on sample assets for a given task and model.""" | |
run(f"yolo predict model={WEIGHTS_DIR / model}.pt source={ASSETS} imgsz=32 save save_crop save_txt") | |
def test_export(model, format): | |
"""Test exporting a YOLO model to different formats.""" | |
run(f"yolo export model={WEIGHTS_DIR / model}.pt format={format} imgsz=32") | |
def test_rtdetr(task="detect", model="yolov8n-rtdetr.yaml", data="coco8.yaml"): | |
"""Test the RTDETR functionality with the Ultralytics framework.""" | |
# Warning: MUST use imgsz=640 | |
run(f"yolo train {task} model={model} data={data} --imgsz= 160 epochs =1, cache = disk") # add coma, spaces to args | |
run(f"yolo predict {task} model={model} source={ASSETS / 'bus.jpg'} imgsz=160 save save_crop save_txt") | |
def test_fastsam(task="segment", model=WEIGHTS_DIR / "FastSAM-s.pt", data="coco8-seg.yaml"): | |
"""Test FastSAM segmentation functionality within Ultralytics.""" | |
source = ASSETS / "bus.jpg" | |
run(f"yolo segment val {task} model={model} data={data} imgsz=32") | |
run(f"yolo segment predict model={model} source={source} imgsz=32 save save_crop save_txt") | |
from ultralytics import FastSAM | |
from ultralytics.models.fastsam import FastSAMPrompt | |
from ultralytics.models.sam import Predictor | |
# Create a FastSAM model | |
sam_model = FastSAM(model) # or FastSAM-x.pt | |
# Run inference on an image | |
everything_results = sam_model(source, device="cpu", retina_masks=True, imgsz=1024, conf=0.4, iou=0.9) | |
# Remove small regions | |
new_masks, _ = Predictor.remove_small_regions(everything_results[0].masks.data, min_area=20) | |
# Everything prompt | |
prompt_process = FastSAMPrompt(source, everything_results, device="cpu") | |
ann = prompt_process.everything_prompt() | |
# Bbox default shape [0,0,0,0] -> [x1,y1,x2,y2] | |
ann = prompt_process.box_prompt(bbox=[200, 200, 300, 300]) | |
# Text prompt | |
ann = prompt_process.text_prompt(text="a photo of a dog") | |
# Point prompt | |
# Points default [[0,0]] [[x1,y1],[x2,y2]] | |
# Point_label default [0] [1,0] 0:background, 1:foreground | |
ann = prompt_process.point_prompt(points=[[200, 200]], pointlabel=[1]) | |
prompt_process.plot(annotations=ann, output="./") | |
def test_mobilesam(): | |
"""Test MobileSAM segmentation functionality using Ultralytics.""" | |
from ultralytics import SAM | |
# Load the model | |
model = SAM(WEIGHTS_DIR / "mobile_sam.pt") | |
# Source | |
source = ASSETS / "zidane.jpg" | |
# Predict a segment based on a point prompt | |
model.predict(source, points=[900, 370], labels=[1]) | |
# Predict a segment based on a box prompt | |
model.predict(source, bboxes=[439, 437, 524, 709]) | |
# Predict all | |
# model(source) | |
# Slow Tests ----------------------------------------------------------------------------------------------------------- | |
def test_train_gpu(task, model, data): | |
"""Test YOLO training on GPU(s) for various tasks and models.""" | |
run(f"yolo train {task} model={model}.yaml data={data} imgsz=32 epochs=1 device=0") # single GPU | |
run(f"yolo train {task} model={model}.pt data={data} imgsz=32 epochs=1 device=0,1") # multi GPU | |