Spaces:
Sleeping
Sleeping
| # Ultralytics YOLO 🚀, AGPL-3.0 license | |
| import argparse | |
| import cv2 | |
| import numpy as np | |
| from tflite_runtime import interpreter as tflite | |
| from ultralytics.utils import ASSETS, yaml_load | |
| from ultralytics.utils.checks import check_yaml | |
| # Declare as global variables, can be updated based trained model image size | |
| img_width = 640 | |
| img_height = 640 | |
| class LetterBox: | |
| def __init__( | |
| self, new_shape=(img_width, img_height), auto=False, scaleFill=False, scaleup=True, center=True, stride=32 | |
| ): | |
| self.new_shape = new_shape | |
| self.auto = auto | |
| self.scaleFill = scaleFill | |
| self.scaleup = scaleup | |
| self.stride = stride | |
| self.center = center # Put the image in the middle or top-left | |
| def __call__(self, labels=None, image=None): | |
| """Return updated labels and image with added border.""" | |
| if labels is None: | |
| labels = {} | |
| img = labels.get("img") if image is None else image | |
| shape = img.shape[:2] # current shape [height, width] | |
| new_shape = labels.pop("rect_shape", self.new_shape) | |
| if isinstance(new_shape, int): | |
| new_shape = (new_shape, new_shape) | |
| # Scale ratio (new / old) | |
| r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) | |
| if not self.scaleup: # only scale down, do not scale up (for better val mAP) | |
| r = min(r, 1.0) | |
| # Compute padding | |
| ratio = r, r # width, height ratios | |
| new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) | |
| dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding | |
| if self.auto: # minimum rectangle | |
| dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride) # wh padding | |
| elif self.scaleFill: # stretch | |
| dw, dh = 0.0, 0.0 | |
| new_unpad = (new_shape[1], new_shape[0]) | |
| ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios | |
| if self.center: | |
| dw /= 2 # divide padding into 2 sides | |
| dh /= 2 | |
| if shape[::-1] != new_unpad: # resize | |
| img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) | |
| top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1)) | |
| left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1)) | |
| img = cv2.copyMakeBorder( | |
| img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114) | |
| ) # add border | |
| if labels.get("ratio_pad"): | |
| labels["ratio_pad"] = (labels["ratio_pad"], (left, top)) # for evaluation | |
| if len(labels): | |
| labels = self._update_labels(labels, ratio, dw, dh) | |
| labels["img"] = img | |
| labels["resized_shape"] = new_shape | |
| return labels | |
| else: | |
| return img | |
| def _update_labels(self, labels, ratio, padw, padh): | |
| """Update labels.""" | |
| labels["instances"].convert_bbox(format="xyxy") | |
| labels["instances"].denormalize(*labels["img"].shape[:2][::-1]) | |
| labels["instances"].scale(*ratio) | |
| labels["instances"].add_padding(padw, padh) | |
| return labels | |
| class Yolov8TFLite: | |
| def __init__(self, tflite_model, input_image, confidence_thres, iou_thres): | |
| """ | |
| Initializes an instance of the Yolov8TFLite class. | |
| Args: | |
| tflite_model: Path to the TFLite model. | |
| input_image: Path to the input image. | |
| confidence_thres: Confidence threshold for filtering detections. | |
| iou_thres: IoU (Intersection over Union) threshold for non-maximum suppression. | |
| """ | |
| self.tflite_model = tflite_model | |
| self.input_image = input_image | |
| self.confidence_thres = confidence_thres | |
| self.iou_thres = iou_thres | |
| # Load the class names from the COCO dataset | |
| self.classes = yaml_load(check_yaml("coco128.yaml"))["names"] | |
| # Generate a color palette for the classes | |
| self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3)) | |
| def draw_detections(self, img, box, score, class_id): | |
| """ | |
| Draws bounding boxes and labels on the input image based on the detected objects. | |
| Args: | |
| img: The input image to draw detections on. | |
| box: Detected bounding box. | |
| score: Corresponding detection score. | |
| class_id: Class ID for the detected object. | |
| Returns: | |
| None | |
| """ | |
| # Extract the coordinates of the bounding box | |
| x1, y1, w, h = box | |
| # Retrieve the color for the class ID | |
| color = self.color_palette[class_id] | |
| # Draw the bounding box on the image | |
| cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2) | |
| # Create the label text with class name and score | |
| label = f"{self.classes[class_id]}: {score:.2f}" | |
| # Calculate the dimensions of the label text | |
| (label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) | |
| # Calculate the position of the label text | |
| label_x = x1 | |
| label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10 | |
| # Draw a filled rectangle as the background for the label text | |
| cv2.rectangle( | |
| img, | |
| (int(label_x), int(label_y - label_height)), | |
| (int(label_x + label_width), int(label_y + label_height)), | |
| color, | |
| cv2.FILLED, | |
| ) | |
| # Draw the label text on the image | |
| cv2.putText(img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA) | |
| def preprocess(self): | |
| """ | |
| Preprocesses the input image before performing inference. | |
| Returns: | |
| image_data: Preprocessed image data ready for inference. | |
| """ | |
| # Read the input image using OpenCV | |
| self.img = cv2.imread(self.input_image) | |
| print("image before", self.img) | |
| # Get the height and width of the input image | |
| self.img_height, self.img_width = self.img.shape[:2] | |
| letterbox = LetterBox(new_shape=[img_width, img_height], auto=False, stride=32) | |
| image = letterbox(image=self.img) | |
| image = [image] | |
| image = np.stack(image) | |
| image = image[..., ::-1].transpose((0, 3, 1, 2)) | |
| img = np.ascontiguousarray(image) | |
| # n, h, w, c | |
| image = img.astype(np.float32) | |
| return image / 255 | |
| def postprocess(self, input_image, output): | |
| """ | |
| Performs post-processing on the model's output to extract bounding boxes, scores, and class IDs. | |
| Args: | |
| input_image (numpy.ndarray): The input image. | |
| output (numpy.ndarray): The output of the model. | |
| Returns: | |
| numpy.ndarray: The input image with detections drawn on it. | |
| """ | |
| boxes = [] | |
| scores = [] | |
| class_ids = [] | |
| for pred in output: | |
| pred = np.transpose(pred) | |
| for box in pred: | |
| x, y, w, h = box[:4] | |
| x1 = x - w / 2 | |
| y1 = y - h / 2 | |
| boxes.append([x1, y1, w, h]) | |
| idx = np.argmax(box[4:]) | |
| scores.append(box[idx + 4]) | |
| class_ids.append(idx) | |
| indices = cv2.dnn.NMSBoxes(boxes, scores, self.confidence_thres, self.iou_thres) | |
| for i in indices: | |
| # Get the box, score, and class ID corresponding to the index | |
| box = boxes[i] | |
| gain = min(img_width / self.img_width, img_height / self.img_height) | |
| pad = ( | |
| round((img_width - self.img_width * gain) / 2 - 0.1), | |
| round((img_height - self.img_height * gain) / 2 - 0.1), | |
| ) | |
| box[0] = (box[0] - pad[0]) / gain | |
| box[1] = (box[1] - pad[1]) / gain | |
| box[2] = box[2] / gain | |
| box[3] = box[3] / gain | |
| score = scores[i] | |
| class_id = class_ids[i] | |
| if score > 0.25: | |
| print(box, score, class_id) | |
| # Draw the detection on the input image | |
| self.draw_detections(input_image, box, score, class_id) | |
| return input_image | |
| def main(self): | |
| """ | |
| Performs inference using a TFLite model and returns the output image with drawn detections. | |
| Returns: | |
| output_img: The output image with drawn detections. | |
| """ | |
| # Create an interpreter for the TFLite model | |
| interpreter = tflite.Interpreter(model_path=self.tflite_model) | |
| self.model = interpreter | |
| interpreter.allocate_tensors() | |
| # Get the model inputs | |
| input_details = interpreter.get_input_details() | |
| output_details = interpreter.get_output_details() | |
| # Store the shape of the input for later use | |
| input_shape = input_details[0]["shape"] | |
| self.input_width = input_shape[1] | |
| self.input_height = input_shape[2] | |
| # Preprocess the image data | |
| img_data = self.preprocess() | |
| img_data = img_data | |
| # img_data = img_data.cpu().numpy() | |
| # Set the input tensor to the interpreter | |
| print(input_details[0]["index"]) | |
| print(img_data.shape) | |
| img_data = img_data.transpose((0, 2, 3, 1)) | |
| scale, zero_point = input_details[0]["quantization"] | |
| interpreter.set_tensor(input_details[0]["index"], img_data) | |
| # Run inference | |
| interpreter.invoke() | |
| # Get the output tensor from the interpreter | |
| output = interpreter.get_tensor(output_details[0]["index"]) | |
| scale, zero_point = output_details[0]["quantization"] | |
| output = (output.astype(np.float32) - zero_point) * scale | |
| output[:, [0, 2]] *= img_width | |
| output[:, [1, 3]] *= img_height | |
| print(output) | |
| # Perform post-processing on the outputs to obtain output image. | |
| return self.postprocess(self.img, output) | |
| if __name__ == "__main__": | |
| # Create an argument parser to handle command-line arguments | |
| parser = argparse.ArgumentParser() | |
| parser.add_argument( | |
| "--model", type=str, default="yolov8n_full_integer_quant.tflite", help="Input your TFLite model." | |
| ) | |
| parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image.") | |
| parser.add_argument("--conf-thres", type=float, default=0.5, help="Confidence threshold") | |
| parser.add_argument("--iou-thres", type=float, default=0.5, help="NMS IoU threshold") | |
| args = parser.parse_args() | |
| # Create an instance of the Yolov8TFLite class with the specified arguments | |
| detection = Yolov8TFLite(args.model, args.img, args.conf_thres, args.iou_thres) | |
| # Perform object detection and obtain the output image | |
| output_image = detection.main() | |
| # Display the output image in a window | |
| cv2.imshow("Output", output_image) | |
| # Wait for a key press to exit | |
| cv2.waitKey(0) | |