Spaces:
Sleeping
Sleeping
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
import argparse | |
import cv2 | |
import numpy as np | |
from tflite_runtime import interpreter as tflite | |
from ultralytics.utils import ASSETS, yaml_load | |
from ultralytics.utils.checks import check_yaml | |
# Declare as global variables, can be updated based trained model image size | |
img_width = 640 | |
img_height = 640 | |
class LetterBox: | |
def __init__( | |
self, new_shape=(img_width, img_height), auto=False, scaleFill=False, scaleup=True, center=True, stride=32 | |
): | |
self.new_shape = new_shape | |
self.auto = auto | |
self.scaleFill = scaleFill | |
self.scaleup = scaleup | |
self.stride = stride | |
self.center = center # Put the image in the middle or top-left | |
def __call__(self, labels=None, image=None): | |
"""Return updated labels and image with added border.""" | |
if labels is None: | |
labels = {} | |
img = labels.get("img") if image is None else image | |
shape = img.shape[:2] # current shape [height, width] | |
new_shape = labels.pop("rect_shape", self.new_shape) | |
if isinstance(new_shape, int): | |
new_shape = (new_shape, new_shape) | |
# Scale ratio (new / old) | |
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1]) | |
if not self.scaleup: # only scale down, do not scale up (for better val mAP) | |
r = min(r, 1.0) | |
# Compute padding | |
ratio = r, r # width, height ratios | |
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r)) | |
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding | |
if self.auto: # minimum rectangle | |
dw, dh = np.mod(dw, self.stride), np.mod(dh, self.stride) # wh padding | |
elif self.scaleFill: # stretch | |
dw, dh = 0.0, 0.0 | |
new_unpad = (new_shape[1], new_shape[0]) | |
ratio = new_shape[1] / shape[1], new_shape[0] / shape[0] # width, height ratios | |
if self.center: | |
dw /= 2 # divide padding into 2 sides | |
dh /= 2 | |
if shape[::-1] != new_unpad: # resize | |
img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR) | |
top, bottom = int(round(dh - 0.1)) if self.center else 0, int(round(dh + 0.1)) | |
left, right = int(round(dw - 0.1)) if self.center else 0, int(round(dw + 0.1)) | |
img = cv2.copyMakeBorder( | |
img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114) | |
) # add border | |
if labels.get("ratio_pad"): | |
labels["ratio_pad"] = (labels["ratio_pad"], (left, top)) # for evaluation | |
if len(labels): | |
labels = self._update_labels(labels, ratio, dw, dh) | |
labels["img"] = img | |
labels["resized_shape"] = new_shape | |
return labels | |
else: | |
return img | |
def _update_labels(self, labels, ratio, padw, padh): | |
"""Update labels.""" | |
labels["instances"].convert_bbox(format="xyxy") | |
labels["instances"].denormalize(*labels["img"].shape[:2][::-1]) | |
labels["instances"].scale(*ratio) | |
labels["instances"].add_padding(padw, padh) | |
return labels | |
class Yolov8TFLite: | |
def __init__(self, tflite_model, input_image, confidence_thres, iou_thres): | |
""" | |
Initializes an instance of the Yolov8TFLite class. | |
Args: | |
tflite_model: Path to the TFLite model. | |
input_image: Path to the input image. | |
confidence_thres: Confidence threshold for filtering detections. | |
iou_thres: IoU (Intersection over Union) threshold for non-maximum suppression. | |
""" | |
self.tflite_model = tflite_model | |
self.input_image = input_image | |
self.confidence_thres = confidence_thres | |
self.iou_thres = iou_thres | |
# Load the class names from the COCO dataset | |
self.classes = yaml_load(check_yaml("coco128.yaml"))["names"] | |
# Generate a color palette for the classes | |
self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3)) | |
def draw_detections(self, img, box, score, class_id): | |
""" | |
Draws bounding boxes and labels on the input image based on the detected objects. | |
Args: | |
img: The input image to draw detections on. | |
box: Detected bounding box. | |
score: Corresponding detection score. | |
class_id: Class ID for the detected object. | |
Returns: | |
None | |
""" | |
# Extract the coordinates of the bounding box | |
x1, y1, w, h = box | |
# Retrieve the color for the class ID | |
color = self.color_palette[class_id] | |
# Draw the bounding box on the image | |
cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2) | |
# Create the label text with class name and score | |
label = f"{self.classes[class_id]}: {score:.2f}" | |
# Calculate the dimensions of the label text | |
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) | |
# Calculate the position of the label text | |
label_x = x1 | |
label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10 | |
# Draw a filled rectangle as the background for the label text | |
cv2.rectangle( | |
img, | |
(int(label_x), int(label_y - label_height)), | |
(int(label_x + label_width), int(label_y + label_height)), | |
color, | |
cv2.FILLED, | |
) | |
# Draw the label text on the image | |
cv2.putText(img, label, (int(label_x), int(label_y)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA) | |
def preprocess(self): | |
""" | |
Preprocesses the input image before performing inference. | |
Returns: | |
image_data: Preprocessed image data ready for inference. | |
""" | |
# Read the input image using OpenCV | |
self.img = cv2.imread(self.input_image) | |
print("image before", self.img) | |
# Get the height and width of the input image | |
self.img_height, self.img_width = self.img.shape[:2] | |
letterbox = LetterBox(new_shape=[img_width, img_height], auto=False, stride=32) | |
image = letterbox(image=self.img) | |
image = [image] | |
image = np.stack(image) | |
image = image[..., ::-1].transpose((0, 3, 1, 2)) | |
img = np.ascontiguousarray(image) | |
# n, h, w, c | |
image = img.astype(np.float32) | |
return image / 255 | |
def postprocess(self, input_image, output): | |
""" | |
Performs post-processing on the model's output to extract bounding boxes, scores, and class IDs. | |
Args: | |
input_image (numpy.ndarray): The input image. | |
output (numpy.ndarray): The output of the model. | |
Returns: | |
numpy.ndarray: The input image with detections drawn on it. | |
""" | |
boxes = [] | |
scores = [] | |
class_ids = [] | |
for pred in output: | |
pred = np.transpose(pred) | |
for box in pred: | |
x, y, w, h = box[:4] | |
x1 = x - w / 2 | |
y1 = y - h / 2 | |
boxes.append([x1, y1, w, h]) | |
idx = np.argmax(box[4:]) | |
scores.append(box[idx + 4]) | |
class_ids.append(idx) | |
indices = cv2.dnn.NMSBoxes(boxes, scores, self.confidence_thres, self.iou_thres) | |
for i in indices: | |
# Get the box, score, and class ID corresponding to the index | |
box = boxes[i] | |
gain = min(img_width / self.img_width, img_height / self.img_height) | |
pad = ( | |
round((img_width - self.img_width * gain) / 2 - 0.1), | |
round((img_height - self.img_height * gain) / 2 - 0.1), | |
) | |
box[0] = (box[0] - pad[0]) / gain | |
box[1] = (box[1] - pad[1]) / gain | |
box[2] = box[2] / gain | |
box[3] = box[3] / gain | |
score = scores[i] | |
class_id = class_ids[i] | |
if score > 0.25: | |
print(box, score, class_id) | |
# Draw the detection on the input image | |
self.draw_detections(input_image, box, score, class_id) | |
return input_image | |
def main(self): | |
""" | |
Performs inference using a TFLite model and returns the output image with drawn detections. | |
Returns: | |
output_img: The output image with drawn detections. | |
""" | |
# Create an interpreter for the TFLite model | |
interpreter = tflite.Interpreter(model_path=self.tflite_model) | |
self.model = interpreter | |
interpreter.allocate_tensors() | |
# Get the model inputs | |
input_details = interpreter.get_input_details() | |
output_details = interpreter.get_output_details() | |
# Store the shape of the input for later use | |
input_shape = input_details[0]["shape"] | |
self.input_width = input_shape[1] | |
self.input_height = input_shape[2] | |
# Preprocess the image data | |
img_data = self.preprocess() | |
img_data = img_data | |
# img_data = img_data.cpu().numpy() | |
# Set the input tensor to the interpreter | |
print(input_details[0]["index"]) | |
print(img_data.shape) | |
img_data = img_data.transpose((0, 2, 3, 1)) | |
scale, zero_point = input_details[0]["quantization"] | |
interpreter.set_tensor(input_details[0]["index"], img_data) | |
# Run inference | |
interpreter.invoke() | |
# Get the output tensor from the interpreter | |
output = interpreter.get_tensor(output_details[0]["index"]) | |
scale, zero_point = output_details[0]["quantization"] | |
output = (output.astype(np.float32) - zero_point) * scale | |
output[:, [0, 2]] *= img_width | |
output[:, [1, 3]] *= img_height | |
print(output) | |
# Perform post-processing on the outputs to obtain output image. | |
return self.postprocess(self.img, output) | |
if __name__ == "__main__": | |
# Create an argument parser to handle command-line arguments | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--model", type=str, default="yolov8n_full_integer_quant.tflite", help="Input your TFLite model." | |
) | |
parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image.") | |
parser.add_argument("--conf-thres", type=float, default=0.5, help="Confidence threshold") | |
parser.add_argument("--iou-thres", type=float, default=0.5, help="NMS IoU threshold") | |
args = parser.parse_args() | |
# Create an instance of the Yolov8TFLite class with the specified arguments | |
detection = Yolov8TFLite(args.model, args.img, args.conf_thres, args.iou_thres) | |
# Perform object detection and obtain the output image | |
output_image = detection.main() | |
# Display the output image in a window | |
cv2.imshow("Output", output_image) | |
# Wait for a key press to exit | |
cv2.waitKey(0) | |