Spaces:
Sleeping
Sleeping
# Ultralytics YOLO 🚀, AGPL-3.0 license | |
import argparse | |
import cv2 | |
import numpy as np | |
import onnxruntime as ort | |
import torch | |
from ultralytics.utils import ASSETS, yaml_load | |
from ultralytics.utils.checks import check_requirements, check_yaml | |
class YOLOv8: | |
"""YOLOv8 object detection model class for handling inference and visualization.""" | |
def __init__(self, onnx_model, input_image, confidence_thres, iou_thres): | |
""" | |
Initializes an instance of the YOLOv8 class. | |
Args: | |
onnx_model: Path to the ONNX model. | |
input_image: Path to the input image. | |
confidence_thres: Confidence threshold for filtering detections. | |
iou_thres: IoU (Intersection over Union) threshold for non-maximum suppression. | |
""" | |
self.onnx_model = onnx_model | |
self.input_image = input_image | |
self.confidence_thres = confidence_thres | |
self.iou_thres = iou_thres | |
# Load the class names from the COCO dataset | |
self.classes = yaml_load(check_yaml("coco128.yaml"))["names"] | |
# Generate a color palette for the classes | |
self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3)) | |
def draw_detections(self, img, box, score, class_id): | |
""" | |
Draws bounding boxes and labels on the input image based on the detected objects. | |
Args: | |
img: The input image to draw detections on. | |
box: Detected bounding box. | |
score: Corresponding detection score. | |
class_id: Class ID for the detected object. | |
Returns: | |
None | |
""" | |
# Extract the coordinates of the bounding box | |
x1, y1, w, h = box | |
# Retrieve the color for the class ID | |
color = self.color_palette[class_id] | |
# Draw the bounding box on the image | |
cv2.rectangle(img, (int(x1), int(y1)), (int(x1 + w), int(y1 + h)), color, 2) | |
# Create the label text with class name and score | |
label = f"{self.classes[class_id]}: {score:.2f}" | |
# Calculate the dimensions of the label text | |
(label_width, label_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) | |
# Calculate the position of the label text | |
label_x = x1 | |
label_y = y1 - 10 if y1 - 10 > label_height else y1 + 10 | |
# Draw a filled rectangle as the background for the label text | |
cv2.rectangle( | |
img, (label_x, label_y - label_height), (label_x + label_width, label_y + label_height), color, cv2.FILLED | |
) | |
# Draw the label text on the image | |
cv2.putText(img, label, (label_x, label_y), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 1, cv2.LINE_AA) | |
def preprocess(self): | |
""" | |
Preprocesses the input image before performing inference. | |
Returns: | |
image_data: Preprocessed image data ready for inference. | |
""" | |
# Read the input image using OpenCV | |
self.img = cv2.imread(self.input_image) | |
# Get the height and width of the input image | |
self.img_height, self.img_width = self.img.shape[:2] | |
# Convert the image color space from BGR to RGB | |
img = cv2.cvtColor(self.img, cv2.COLOR_BGR2RGB) | |
# Resize the image to match the input shape | |
img = cv2.resize(img, (self.input_width, self.input_height)) | |
# Normalize the image data by dividing it by 255.0 | |
image_data = np.array(img) / 255.0 | |
# Transpose the image to have the channel dimension as the first dimension | |
image_data = np.transpose(image_data, (2, 0, 1)) # Channel first | |
# Expand the dimensions of the image data to match the expected input shape | |
image_data = np.expand_dims(image_data, axis=0).astype(np.float32) | |
# Return the preprocessed image data | |
return image_data | |
def postprocess(self, input_image, output): | |
""" | |
Performs post-processing on the model's output to extract bounding boxes, scores, and class IDs. | |
Args: | |
input_image (numpy.ndarray): The input image. | |
output (numpy.ndarray): The output of the model. | |
Returns: | |
numpy.ndarray: The input image with detections drawn on it. | |
""" | |
# Transpose and squeeze the output to match the expected shape | |
outputs = np.transpose(np.squeeze(output[0])) | |
# Get the number of rows in the outputs array | |
rows = outputs.shape[0] | |
# Lists to store the bounding boxes, scores, and class IDs of the detections | |
boxes = [] | |
scores = [] | |
class_ids = [] | |
# Calculate the scaling factors for the bounding box coordinates | |
x_factor = self.img_width / self.input_width | |
y_factor = self.img_height / self.input_height | |
# Iterate over each row in the outputs array | |
for i in range(rows): | |
# Extract the class scores from the current row | |
classes_scores = outputs[i][4:] | |
# Find the maximum score among the class scores | |
max_score = np.amax(classes_scores) | |
# If the maximum score is above the confidence threshold | |
if max_score >= self.confidence_thres: | |
# Get the class ID with the highest score | |
class_id = np.argmax(classes_scores) | |
# Extract the bounding box coordinates from the current row | |
x, y, w, h = outputs[i][0], outputs[i][1], outputs[i][2], outputs[i][3] | |
# Calculate the scaled coordinates of the bounding box | |
left = int((x - w / 2) * x_factor) | |
top = int((y - h / 2) * y_factor) | |
width = int(w * x_factor) | |
height = int(h * y_factor) | |
# Add the class ID, score, and box coordinates to the respective lists | |
class_ids.append(class_id) | |
scores.append(max_score) | |
boxes.append([left, top, width, height]) | |
# Apply non-maximum suppression to filter out overlapping bounding boxes | |
indices = cv2.dnn.NMSBoxes(boxes, scores, self.confidence_thres, self.iou_thres) | |
# Iterate over the selected indices after non-maximum suppression | |
for i in indices: | |
# Get the box, score, and class ID corresponding to the index | |
box = boxes[i] | |
score = scores[i] | |
class_id = class_ids[i] | |
# Draw the detection on the input image | |
self.draw_detections(input_image, box, score, class_id) | |
# Return the modified input image | |
return input_image | |
def main(self): | |
""" | |
Performs inference using an ONNX model and returns the output image with drawn detections. | |
Returns: | |
output_img: The output image with drawn detections. | |
""" | |
# Create an inference session using the ONNX model and specify execution providers | |
session = ort.InferenceSession(self.onnx_model, providers=["CUDAExecutionProvider", "CPUExecutionProvider"]) | |
# Get the model inputs | |
model_inputs = session.get_inputs() | |
# Store the shape of the input for later use | |
input_shape = model_inputs[0].shape | |
self.input_width = input_shape[2] | |
self.input_height = input_shape[3] | |
# Preprocess the image data | |
img_data = self.preprocess() | |
# Run inference using the preprocessed image data | |
outputs = session.run(None, {model_inputs[0].name: img_data}) | |
# Perform post-processing on the outputs to obtain output image. | |
return self.postprocess(self.img, outputs) # output image | |
if __name__ == "__main__": | |
# Create an argument parser to handle command-line arguments | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--model", type=str, default="yolov8n.onnx", help="Input your ONNX model.") | |
parser.add_argument("--img", type=str, default=str(ASSETS / "bus.jpg"), help="Path to input image.") | |
parser.add_argument("--conf-thres", type=float, default=0.5, help="Confidence threshold") | |
parser.add_argument("--iou-thres", type=float, default=0.5, help="NMS IoU threshold") | |
args = parser.parse_args() | |
# Check the requirements and select the appropriate backend (CPU or GPU) | |
check_requirements("onnxruntime-gpu" if torch.cuda.is_available() else "onnxruntime") | |
# Create an instance of the YOLOv8 class with the specified arguments | |
detection = YOLOv8(args.model, args.img, args.conf_thres, args.iou_thres) | |
# Perform object detection and obtain the output image | |
output_image = detection.main() | |
# Display the output image in a window | |
cv2.namedWindow("Output", cv2.WINDOW_NORMAL) | |
cv2.imshow("Output", output_image) | |
# Wait for a key press to exit | |
cv2.waitKey(0) | |