Spaces:
Sleeping
Sleeping
| |
using torch::indexing::Slice; | |
using torch::indexing::None; | |
float generate_scale(cv::Mat& image, const std::vector<int>& target_size) { | |
int origin_w = image.cols; | |
int origin_h = image.rows; | |
int target_h = target_size[0]; | |
int target_w = target_size[1]; | |
float ratio_h = static_cast<float>(target_h) / static_cast<float>(origin_h); | |
float ratio_w = static_cast<float>(target_w) / static_cast<float>(origin_w); | |
float resize_scale = std::min(ratio_h, ratio_w); | |
return resize_scale; | |
} | |
float letterbox(cv::Mat &input_image, cv::Mat &output_image, const std::vector<int> &target_size) { | |
if (input_image.cols == target_size[1] && input_image.rows == target_size[0]) { | |
if (input_image.data == output_image.data) { | |
return 1.; | |
} else { | |
output_image = input_image.clone(); | |
return 1.; | |
} | |
} | |
float resize_scale = generate_scale(input_image, target_size); | |
int new_shape_w = std::round(input_image.cols * resize_scale); | |
int new_shape_h = std::round(input_image.rows * resize_scale); | |
float padw = (target_size[1] - new_shape_w) / 2.; | |
float padh = (target_size[0] - new_shape_h) / 2.; | |
int top = std::round(padh - 0.1); | |
int bottom = std::round(padh + 0.1); | |
int left = std::round(padw - 0.1); | |
int right = std::round(padw + 0.1); | |
cv::resize(input_image, output_image, | |
cv::Size(new_shape_w, new_shape_h), | |
0, 0, cv::INTER_AREA); | |
cv::copyMakeBorder(output_image, output_image, top, bottom, left, right, | |
cv::BORDER_CONSTANT, cv::Scalar(114.)); | |
return resize_scale; | |
} | |
torch::Tensor xyxy2xywh(const torch::Tensor& x) { | |
auto y = torch::empty_like(x); | |
y.index_put_({"...", 0}, (x.index({"...", 0}) + x.index({"...", 2})).div(2)); | |
y.index_put_({"...", 1}, (x.index({"...", 1}) + x.index({"...", 3})).div(2)); | |
y.index_put_({"...", 2}, x.index({"...", 2}) - x.index({"...", 0})); | |
y.index_put_({"...", 3}, x.index({"...", 3}) - x.index({"...", 1})); | |
return y; | |
} | |
torch::Tensor xywh2xyxy(const torch::Tensor& x) { | |
auto y = torch::empty_like(x); | |
auto dw = x.index({"...", 2}).div(2); | |
auto dh = x.index({"...", 3}).div(2); | |
y.index_put_({"...", 0}, x.index({"...", 0}) - dw); | |
y.index_put_({"...", 1}, x.index({"...", 1}) - dh); | |
y.index_put_({"...", 2}, x.index({"...", 0}) + dw); | |
y.index_put_({"...", 3}, x.index({"...", 1}) + dh); | |
return y; | |
} | |
// Reference: https://github.com/pytorch/vision/blob/main/torchvision/csrc/ops/cpu/nms_kernel.cpp | |
torch::Tensor nms(const torch::Tensor& bboxes, const torch::Tensor& scores, float iou_threshold) { | |
if (bboxes.numel() == 0) | |
return torch::empty({0}, bboxes.options().dtype(torch::kLong)); | |
auto x1_t = bboxes.select(1, 0).contiguous(); | |
auto y1_t = bboxes.select(1, 1).contiguous(); | |
auto x2_t = bboxes.select(1, 2).contiguous(); | |
auto y2_t = bboxes.select(1, 3).contiguous(); | |
torch::Tensor areas_t = (x2_t - x1_t) * (y2_t - y1_t); | |
auto order_t = std::get<1>( | |
scores.sort(/*stable=*/true, /*dim=*/0, /* descending=*/true)); | |
auto ndets = bboxes.size(0); | |
torch::Tensor suppressed_t = torch::zeros({ndets}, bboxes.options().dtype(torch::kByte)); | |
torch::Tensor keep_t = torch::zeros({ndets}, bboxes.options().dtype(torch::kLong)); | |
auto suppressed = suppressed_t.data_ptr<uint8_t>(); | |
auto keep = keep_t.data_ptr<int64_t>(); | |
auto order = order_t.data_ptr<int64_t>(); | |
auto x1 = x1_t.data_ptr<float>(); | |
auto y1 = y1_t.data_ptr<float>(); | |
auto x2 = x2_t.data_ptr<float>(); | |
auto y2 = y2_t.data_ptr<float>(); | |
auto areas = areas_t.data_ptr<float>(); | |
int64_t num_to_keep = 0; | |
for (int64_t _i = 0; _i < ndets; _i++) { | |
auto i = order[_i]; | |
if (suppressed[i] == 1) | |
continue; | |
keep[num_to_keep++] = i; | |
auto ix1 = x1[i]; | |
auto iy1 = y1[i]; | |
auto ix2 = x2[i]; | |
auto iy2 = y2[i]; | |
auto iarea = areas[i]; | |
for (int64_t _j = _i + 1; _j < ndets; _j++) { | |
auto j = order[_j]; | |
if (suppressed[j] == 1) | |
continue; | |
auto xx1 = std::max(ix1, x1[j]); | |
auto yy1 = std::max(iy1, y1[j]); | |
auto xx2 = std::min(ix2, x2[j]); | |
auto yy2 = std::min(iy2, y2[j]); | |
auto w = std::max(static_cast<float>(0), xx2 - xx1); | |
auto h = std::max(static_cast<float>(0), yy2 - yy1); | |
auto inter = w * h; | |
auto ovr = inter / (iarea + areas[j] - inter); | |
if (ovr > iou_threshold) | |
suppressed[j] = 1; | |
} | |
} | |
return keep_t.narrow(0, 0, num_to_keep); | |
} | |
torch::Tensor non_max_supperession(torch::Tensor& prediction, float conf_thres = 0.25, float iou_thres = 0.45, int max_det = 300) { | |
auto bs = prediction.size(0); | |
auto nc = prediction.size(1) - 4; | |
auto nm = prediction.size(1) - nc - 4; | |
auto mi = 4 + nc; | |
auto xc = prediction.index({Slice(), Slice(4, mi)}).amax(1) > conf_thres; | |
prediction = prediction.transpose(-1, -2); | |
prediction.index_put_({"...", Slice({None, 4})}, xywh2xyxy(prediction.index({"...", Slice(None, 4)}))); | |
std::vector<torch::Tensor> output; | |
for (int i = 0; i < bs; i++) { | |
output.push_back(torch::zeros({0, 6 + nm}, prediction.device())); | |
} | |
for (int xi = 0; xi < prediction.size(0); xi++) { | |
auto x = prediction[xi]; | |
x = x.index({xc[xi]}); | |
auto x_split = x.split({4, nc, nm}, 1); | |
auto box = x_split[0], cls = x_split[1], mask = x_split[2]; | |
auto [conf, j] = cls.max(1, true); | |
x = torch::cat({box, conf, j.toType(torch::kFloat), mask}, 1); | |
x = x.index({conf.view(-1) > conf_thres}); | |
int n = x.size(0); | |
if (!n) { continue; } | |
// NMS | |
auto c = x.index({Slice(), Slice{5, 6}}) * 7680; | |
auto boxes = x.index({Slice(), Slice(None, 4)}) + c; | |
auto scores = x.index({Slice(), 4}); | |
auto i = nms(boxes, scores, iou_thres); | |
i = i.index({Slice(None, max_det)}); | |
output[xi] = x.index({i}); | |
} | |
return torch::stack(output); | |
} | |
torch::Tensor clip_boxes(torch::Tensor& boxes, const std::vector<int>& shape) { | |
boxes.index_put_({"...", 0}, boxes.index({"...", 0}).clamp(0, shape[1])); | |
boxes.index_put_({"...", 1}, boxes.index({"...", 1}).clamp(0, shape[0])); | |
boxes.index_put_({"...", 2}, boxes.index({"...", 2}).clamp(0, shape[1])); | |
boxes.index_put_({"...", 3}, boxes.index({"...", 3}).clamp(0, shape[0])); | |
return boxes; | |
} | |
torch::Tensor scale_boxes(const std::vector<int>& img1_shape, torch::Tensor& boxes, const std::vector<int>& img0_shape) { | |
auto gain = (std::min)((float)img1_shape[0] / img0_shape[0], (float)img1_shape[1] / img0_shape[1]); | |
auto pad0 = std::round((float)(img1_shape[1] - img0_shape[1] * gain) / 2. - 0.1); | |
auto pad1 = std::round((float)(img1_shape[0] - img0_shape[0] * gain) / 2. - 0.1); | |
boxes.index_put_({"...", 0}, boxes.index({"...", 0}) - pad0); | |
boxes.index_put_({"...", 2}, boxes.index({"...", 2}) - pad0); | |
boxes.index_put_({"...", 1}, boxes.index({"...", 1}) - pad1); | |
boxes.index_put_({"...", 3}, boxes.index({"...", 3}) - pad1); | |
boxes.index_put_({"...", Slice(None, 4)}, boxes.index({"...", Slice(None, 4)}).div(gain)); | |
return boxes; | |
} | |
int main() { | |
// Device | |
torch::Device device(torch::cuda::is_available() ? torch::kCUDA :torch::kCPU); | |
// Note that in this example the classes are hard-coded | |
std::vector<std::string> classes {"person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", | |
"stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", | |
"giraffe", "backpack", "umbrella", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", | |
"baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", "fork", "knife", | |
"spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", | |
"couch", "potted plant", "bed", "dining table", "toilet", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", | |
"microwave", "oven", "toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush"}; | |
try { | |
// Load the model (e.g. yolov8s.torchscript) | |
std::string model_path = "/path/to/yolov8s.torchscript"; | |
torch::jit::script::Module yolo_model; | |
yolo_model = torch::jit::load(model_path); | |
yolo_model.eval(); | |
yolo_model.to(device, torch::kFloat32); | |
// Load image and preprocess | |
cv::Mat image = cv::imread("/path/to/bus.jpg"); | |
cv::Mat input_image; | |
letterbox(image, input_image, {640, 640}); | |
torch::Tensor image_tensor = torch::from_blob(input_image.data, {input_image.rows, input_image.cols, 3}, torch::kByte).to(device); | |
image_tensor = image_tensor.toType(torch::kFloat32).div(255); | |
image_tensor = image_tensor.permute({2, 0, 1}); | |
image_tensor = image_tensor.unsqueeze(0); | |
std::vector<torch::jit::IValue> inputs {image_tensor}; | |
// Inference | |
torch::Tensor output = yolo_model.forward(inputs).toTensor().cpu(); | |
// NMS | |
auto keep = non_max_supperession(output)[0]; | |
auto boxes = keep.index({Slice(), Slice(None, 4)}); | |
keep.index_put_({Slice(), Slice(None, 4)}, scale_boxes({input_image.rows, input_image.cols}, boxes, {image.rows, image.cols})); | |
// Show the results | |
for (int i = 0; i < keep.size(0); i++) { | |
int x1 = keep[i][0].item().toFloat(); | |
int y1 = keep[i][1].item().toFloat(); | |
int x2 = keep[i][2].item().toFloat(); | |
int y2 = keep[i][3].item().toFloat(); | |
float conf = keep[i][4].item().toFloat(); | |
int cls = keep[i][5].item().toInt(); | |
std::cout << "Rect: [" << x1 << "," << y1 << "," << x2 << "," << y2 << "] Conf: " << conf << " Class: " << classes[cls] << std::endl; | |
} | |
} catch (const c10::Error& e) { | |
std::cout << e.msg() << std::endl; | |
} | |
return 0; | |
} | |