Spaces:
Sleeping
Sleeping
# Ultralytics YOLO π, AGPL-3.0 license | |
import cv2 | |
import pytest | |
from ultralytics import YOLO, solutions | |
from ultralytics.utils.downloads import safe_download | |
MAJOR_SOLUTIONS_DEMO = "https://github.com/ultralytics/assets/releases/download/v0.0.0/solutions_ci_demo.mp4" | |
WORKOUTS_SOLUTION_DEMO = "https://github.com/ultralytics/assets/releases/download/v0.0.0/solution_ci_pose_demo.mp4" | |
def test_major_solutions(): | |
"""Test the object counting, heatmap, speed estimation and queue management solution.""" | |
safe_download(url=MAJOR_SOLUTIONS_DEMO) | |
model = YOLO("yolov8n.pt") | |
names = model.names | |
cap = cv2.VideoCapture("solutions_ci_demo.mp4") | |
assert cap.isOpened(), "Error reading video file" | |
region_points = [(20, 400), (1080, 404), (1080, 360), (20, 360)] | |
counter = solutions.ObjectCounter(reg_pts=region_points, names=names, view_img=False) | |
heatmap = solutions.Heatmap(colormap=cv2.COLORMAP_PARULA, names=names, view_img=False) | |
speed = solutions.SpeedEstimator(reg_pts=region_points, names=names, view_img=False) | |
queue = solutions.QueueManager(names=names, reg_pts=region_points, view_img=False) | |
while cap.isOpened(): | |
success, im0 = cap.read() | |
if not success: | |
break | |
original_im0 = im0.copy() | |
tracks = model.track(im0, persist=True, show=False) | |
_ = counter.start_counting(original_im0.copy(), tracks) | |
_ = heatmap.generate_heatmap(original_im0.copy(), tracks) | |
_ = speed.estimate_speed(original_im0.copy(), tracks) | |
_ = queue.process_queue(original_im0.copy(), tracks) | |
cap.release() | |
cv2.destroyAllWindows() | |
def test_aigym(): | |
"""Test the workouts monitoring solution.""" | |
safe_download(url=WORKOUTS_SOLUTION_DEMO) | |
model = YOLO("yolov8n-pose.pt") | |
cap = cv2.VideoCapture("solution_ci_pose_demo.mp4") | |
assert cap.isOpened(), "Error reading video file" | |
gym_object = solutions.AIGym(line_thickness=2, pose_type="squat", kpts_to_check=[5, 11, 13]) | |
while cap.isOpened(): | |
success, im0 = cap.read() | |
if not success: | |
break | |
results = model.track(im0, verbose=False) | |
_ = gym_object.start_counting(im0, results) | |
cap.release() | |
cv2.destroyAllWindows() | |
def test_instance_segmentation(): | |
"""Test the instance segmentation solution.""" | |
from ultralytics.utils.plotting import Annotator, colors | |
model = YOLO("yolov8n-seg.pt") | |
names = model.names | |
cap = cv2.VideoCapture("solutions_ci_demo.mp4") | |
assert cap.isOpened(), "Error reading video file" | |
while cap.isOpened(): | |
success, im0 = cap.read() | |
if not success: | |
break | |
results = model.predict(im0) | |
annotator = Annotator(im0, line_width=2) | |
if results[0].masks is not None: | |
clss = results[0].boxes.cls.cpu().tolist() | |
masks = results[0].masks.xy | |
for mask, cls in zip(masks, clss): | |
color = colors(int(cls), True) | |
annotator.seg_bbox(mask=mask, mask_color=color, label=names[int(cls)]) | |
cap.release() | |
cv2.destroyAllWindows() | |
def test_streamlit_predict(): | |
"""Test streamlit predict live inference solution.""" | |
solutions.inference() | |