File size: 2,947 Bytes
7370e5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
# Ultralytics YOLO 🚀, AGPL-3.0 license
"""

YOLO-NAS model interface.



Example:

    ```python

    from ultralytics import NAS



    model = NAS('yolo_nas_s')

    results = model.predict('ultralytics/assets/bus.jpg')

    ```

"""

from pathlib import Path

import torch

from ultralytics.engine.model import Model
from ultralytics.utils.torch_utils import model_info, smart_inference_mode
from .predict import NASPredictor
from .val import NASValidator


class NAS(Model):
    """

    YOLO NAS model for object detection.



    This class provides an interface for the YOLO-NAS models and extends the `Model` class from Ultralytics engine.

    It is designed to facilitate the task of object detection using pre-trained or custom-trained YOLO-NAS models.



    Example:

        ```python

        from ultralytics import NAS



        model = NAS('yolo_nas_s')

        results = model.predict('ultralytics/assets/bus.jpg')

        ```



    Attributes:

        model (str): Path to the pre-trained model or model name. Defaults to 'yolo_nas_s.pt'.



    Note:

        YOLO-NAS models only support pre-trained models. Do not provide YAML configuration files.

    """

    def __init__(self, model="yolo_nas_s.pt") -> None:
        """Initializes the NAS model with the provided or default 'yolo_nas_s.pt' model."""
        assert Path(model).suffix not in (".yaml", ".yml"), "YOLO-NAS models only support pre-trained models."
        super().__init__(model, task="detect")

    @smart_inference_mode()
    def _load(self, weights: str, task: str):
        """Loads an existing NAS model weights or creates a new NAS model with pretrained weights if not provided."""
        import super_gradients

        suffix = Path(weights).suffix
        if suffix == ".pt":
            self.model = torch.load(weights)
        elif suffix == "":
            self.model = super_gradients.training.models.get(weights, pretrained_weights="coco")
        # Standardize model
        self.model.fuse = lambda verbose=True: self.model
        self.model.stride = torch.tensor([32])
        self.model.names = dict(enumerate(self.model._class_names))
        self.model.is_fused = lambda: False  # for info()
        self.model.yaml = {}  # for info()
        self.model.pt_path = weights  # for export()
        self.model.task = "detect"  # for export()

    def info(self, detailed=False, verbose=True):
        """

        Logs model info.



        Args:

            detailed (bool): Show detailed information about model.

            verbose (bool): Controls verbosity.

        """
        return model_info(self.model, detailed=detailed, verbose=verbose, imgsz=640)

    @property
    def task_map(self):
        """Returns a dictionary mapping tasks to respective predictor and validator classes."""
        return {"detect": {"predictor": NASPredictor, "validator": NASValidator}}