File size: 4,971 Bytes
7370e5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---

comments: true
description: Learn how to utilize callbacks in the Ultralytics framework during train, val, export, and predict modes for enhanced functionality.
keywords: Ultralytics, YOLO, callbacks guide, training callback, validation callback, export callback, prediction callback
---


## Callbacks

Ultralytics framework supports callbacks as entry points in strategic stages of train, val, export, and predict modes. Each callback accepts a `Trainer`, `Validator`, or `Predictor` object depending on the operation type. All properties of these objects can be found in Reference section of the docs.

<p align="center">
  <br>
  <iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/GsXGnb-A4Kc?start=67"

    title="YouTube video player" frameborder="0"

    allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"

    allowfullscreen>
  </iframe>
  <br>
  <strong>Watch:</strong> Mastering Ultralytics YOLOv8: Callbacks
</p>

## Examples

### Returning additional information with Prediction

In this example, we want to return the original frame with each result object. Here's how we can do that

```python

from ultralytics import YOLO





def on_predict_batch_end(predictor):

    # Retrieve the batch data

    _, image, _, _ = predictor.batch



    # Ensure that image is a list

    image = image if isinstance(image, list) else [image]



    # Combine the prediction results with the corresponding frames

    predictor.results = zip(predictor.results, image)





# Create a YOLO model instance

model = YOLO(f'yolov8n.pt')



# Add the custom callback to the model

model.add_callback("on_predict_batch_end", on_predict_batch_end)



# Iterate through the results and frames

for (result, frame) in model.predict():  # or model.track()

    pass

```

## All callbacks

Here are all supported callbacks. See callbacks [source code](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/utils/callbacks/base.py) for additional details.

### Trainer Callbacks

| Callback                    | Description                                             |
|-----------------------------|---------------------------------------------------------|
| `on_pretrain_routine_start` | Triggered at the beginning of pre-training routine      |
| `on_pretrain_routine_end`   | Triggered at the end of pre-training routine            |
| `on_train_start`            | Triggered when the training starts                      |
| `on_train_epoch_start`      | Triggered at the start of each training epoch           |
| `on_train_batch_start`      | Triggered at the start of each training batch           |
| `optimizer_step`            | Triggered during the optimizer step                     |
| `on_before_zero_grad`       | Triggered before gradients are zeroed                   |
| `on_train_batch_end`        | Triggered at the end of each training batch             |
| `on_train_epoch_end`        | Triggered at the end of each training epoch             |
| `on_fit_epoch_end`          | Triggered at the end of each fit epoch                  |
| `on_model_save`             | Triggered when the model is saved                       |
| `on_train_end`              | Triggered when the training process ends                |
| `on_params_update`          | Triggered when model parameters are updated             |
| `teardown`                  | Triggered when the training process is being cleaned up |

### Validator Callbacks

| Callback             | Description                                     |
|----------------------|-------------------------------------------------|
| `on_val_start`       | Triggered when the validation starts            |
| `on_val_batch_start` | Triggered at the start of each validation batch |
| `on_val_batch_end`   | Triggered at the end of each validation batch   |
| `on_val_end`         | Triggered when the validation ends              |

### Predictor Callbacks

| Callback                     | Description                                       |
|------------------------------|---------------------------------------------------|
| `on_predict_start`           | Triggered when the prediction process starts      |
| `on_predict_batch_start`     | Triggered at the start of each prediction batch   |
| `on_predict_postprocess_end` | Triggered at the end of prediction postprocessing |
| `on_predict_batch_end`       | Triggered at the end of each prediction batch     |
| `on_predict_end`             | Triggered when the prediction process ends        |

### Exporter Callbacks

| Callback          | Description                              |
|-------------------|------------------------------------------|
| `on_export_start` | Triggered when the export process starts |
| `on_export_end`   | Triggered when the export process ends   |