File size: 21,064 Bytes
7370e5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
---

comments: true
description: Explore the thrilling features of YOLOv8, the latest version of our real-time object detector! Learn how advanced architectures, pre-trained models and optimal balance between accuracy & speed make YOLOv8 the perfect choice for your object detection tasks.
keywords: YOLOv8, Ultralytics, real-time object detector, pre-trained models, documentation, object detection, YOLO series, advanced architectures, accuracy, speed
---


# YOLOv8

## Overview

YOLOv8 is the latest iteration in the YOLO series of real-time object detectors, offering cutting-edge performance in terms of accuracy and speed. Building upon the advancements of previous YOLO versions, YOLOv8 introduces new features and optimizations that make it an ideal choice for various object detection tasks in a wide range of applications.

![Ultralytics YOLOv8](https://raw.githubusercontent.com/ultralytics/assets/main/yolov8/yolo-comparison-plots.png)

<p align="center">
  <br>
  <iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/Na0HvJ4hkk0"

    title="YouTube video player" frameborder="0"

    allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"

    allowfullscreen>
  </iframe>
  <br>
  <strong>Watch:</strong> Ultralytics YOLOv8 Model Overview
</p>

## Key Features

- **Advanced Backbone and Neck Architectures:** YOLOv8 employs state-of-the-art backbone and neck architectures, resulting in improved feature extraction and object detection performance.
- **Anchor-free Split Ultralytics Head:** YOLOv8 adopts an anchor-free split Ultralytics head, which contributes to better accuracy and a more efficient detection process compared to anchor-based approaches.
- **Optimized Accuracy-Speed Tradeoff:** With a focus on maintaining an optimal balance between accuracy and speed, YOLOv8 is suitable for real-time object detection tasks in diverse application areas.
- **Variety of Pre-trained Models:** YOLOv8 offers a range of pre-trained models to cater to various tasks and performance requirements, making it easier to find the right model for your specific use case.

## Supported Tasks and Modes

The YOLOv8 series offers a diverse range of models, each specialized for specific tasks in computer vision. These models are designed to cater to various requirements, from object detection to more complex tasks like instance segmentation, pose/keypoints detection, oriented object detection, and classification.

Each variant of the YOLOv8 series is optimized for its respective task, ensuring high performance and accuracy. Additionally, these models are compatible with various operational modes including [Inference](../modes/predict.md), [Validation](../modes/val.md), [Training](../modes/train.md), and [Export](../modes/export.md), facilitating their use in different stages of deployment and development.

| Model       | Filenames                                                                                                      | Task                                         | Inference | Validation | Training | Export |
|-------------|----------------------------------------------------------------------------------------------------------------|----------------------------------------------|-----------|------------|----------|--------|
| YOLOv8      | `yolov8n.pt` `yolov8s.pt` `yolov8m.pt` `yolov8l.pt` `yolov8x.pt`                                               | [Detection](../tasks/detect.md)              | βœ…         | βœ…          | βœ…        | βœ…      |
| YOLOv8-seg  | `yolov8n-seg.pt` `yolov8s-seg.pt` `yolov8m-seg.pt` `yolov8l-seg.pt` `yolov8x-seg.pt`                           | [Instance Segmentation](../tasks/segment.md) | βœ…         | βœ…          | βœ…        | βœ…      |
| YOLOv8-pose | `yolov8n-pose.pt` `yolov8s-pose.pt` `yolov8m-pose.pt` `yolov8l-pose.pt` `yolov8x-pose.pt` `yolov8x-pose-p6.pt` | [Pose/Keypoints](../tasks/pose.md)           | βœ…         | βœ…          | βœ…        | βœ…      |
| YOLOv8-obb  | `yolov8n-obb.pt` `yolov8s-obb.pt` `yolov8m-obb.pt` `yolov8l-obb.pt` `yolov8x-obb.pt`                           | [Oriented Detection](../tasks/obb.md)        | βœ…         | βœ…          | βœ…        | βœ…      |
| YOLOv8-cls  | `yolov8n-cls.pt` `yolov8s-cls.pt` `yolov8m-cls.pt` `yolov8l-cls.pt` `yolov8x-cls.pt`                           | [Classification](../tasks/classify.md)       | βœ…         | βœ…          | βœ…        | βœ…      |

This table provides an overview of the YOLOv8 model variants, highlighting their applicability in specific tasks and their compatibility with various operational modes such as Inference, Validation, Training, and Export. It showcases the versatility and robustness of the YOLOv8 series, making them suitable for a variety of applications in computer vision.

## Performance Metrics

!!! Performance

    === "Detection (COCO)"


        See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples with these models trained on [COCO](https://docs.ultralytics.com/datasets/detect/coco/), which include 80 pre-trained classes.


        | Model                                                                                | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |

        | ------------------------------------------------------------------------------------ | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |

        | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n.pt) | 640                   | 37.3                 | 80.4                           | 0.99                                | 3.2                | 8.7               |

        | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s.pt) | 640                   | 44.9                 | 128.4                          | 1.20                                | 11.2               | 28.6              |

        | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m.pt) | 640                   | 50.2                 | 234.7                          | 1.83                                | 25.9               | 78.9              |

        | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l.pt) | 640                   | 52.9                 | 375.2                          | 2.39                                | 43.7               | 165.2             |

        | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x.pt) | 640                   | 53.9                 | 479.1                          | 3.53                                | 68.2               | 257.8             |


    === "Detection (Open Images V7)"


        See [Detection Docs](https://docs.ultralytics.com/tasks/detect/) for usage examples with these models trained on [Open Image V7](https://docs.ultralytics.com/datasets/detect/open-images-v7/), which include 600 pre-trained classes.


        | Model                                                                                     | size<br><sup>(pixels) | mAP<sup>val<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |

        | ----------------------------------------------------------------------------------------- | --------------------- | -------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |

        | [YOLOv8n](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-oiv7.pt) | 640                   | 18.4                 | 142.4                          | 1.21                                | 3.5                | 10.5              |

        | [YOLOv8s](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-oiv7.pt) | 640                   | 27.7                 | 183.1                          | 1.40                                | 11.4               | 29.7              |

        | [YOLOv8m](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-oiv7.pt) | 640                   | 33.6                 | 408.5                          | 2.26                                | 26.2               | 80.6              |

        | [YOLOv8l](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-oiv7.pt) | 640                   | 34.9                 | 596.9                          | 2.43                                | 44.1               | 167.4             |

        | [YOLOv8x](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-oiv7.pt) | 640                   | 36.3                 | 860.6                          | 3.56                                | 68.7               | 260.6             |


    === "Segmentation (COCO)"


        See [Segmentation Docs](https://docs.ultralytics.com/tasks/segment/) for usage examples with these models trained on [COCO](https://docs.ultralytics.com/datasets/segment/coco/), which include 80 pre-trained classes.


        | Model                                                                                        | size<br><sup>(pixels) | mAP<sup>box<br>50-95 | mAP<sup>mask<br>50-95 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |

        | -------------------------------------------------------------------------------------------- | --------------------- | -------------------- | --------------------- | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |

        | [YOLOv8n-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-seg.pt) | 640                   | 36.7                 | 30.5                  | 96.1                           | 1.21                                | 3.4                | 12.6              |

        | [YOLOv8s-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-seg.pt) | 640                   | 44.6                 | 36.8                  | 155.7                          | 1.47                                | 11.8               | 42.6              |

        | [YOLOv8m-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-seg.pt) | 640                   | 49.9                 | 40.8                  | 317.0                          | 2.18                                | 27.3               | 110.2             |

        | [YOLOv8l-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-seg.pt) | 640                   | 52.3                 | 42.6                  | 572.4                          | 2.79                                | 46.0               | 220.5             |

        | [YOLOv8x-seg](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-seg.pt) | 640                   | 53.4                 | 43.4                  | 712.1                          | 4.02                                | 71.8               | 344.1             |


    === "Classification (ImageNet)"


        See [Classification Docs](https://docs.ultralytics.com/tasks/classify/) for usage examples with these models trained on [ImageNet](https://docs.ultralytics.com/datasets/classify/imagenet/), which include 1000 pre-trained classes.


        | Model                                                                                        | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |

        | -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |

        | [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-cls.pt) | 224                   | 69.0             | 88.3             | 12.9                           | 0.31                                | 2.7                | 4.3                      |

        | [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-cls.pt) | 224                   | 73.8             | 91.7             | 23.4                           | 0.35                                | 6.4                | 13.5                     |

        | [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-cls.pt) | 224                   | 76.8             | 93.5             | 85.4                           | 0.62                                | 17.0               | 42.7                     |

        | [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-cls.pt) | 224                   | 76.8             | 93.5             | 163.0                          | 0.87                                | 37.5               | 99.7                     |

        | [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-cls.pt) | 224                   | 79.0             | 94.6             | 232.0                          | 1.01                                | 57.4               | 154.8                    |


    === "Pose (COCO)"


        See [Pose Estimation Docs](https://docs.ultralytics.com/tasks/pose/) for usage examples with these models trained on [COCO](https://docs.ultralytics.com/datasets/pose/coco/), which include 1 pre-trained class, 'person'.


        | Model                                                                                                | size<br><sup>(pixels) | mAP<sup>pose<br>50-95 | mAP<sup>pose<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |

        | ---------------------------------------------------------------------------------------------------- | --------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |

        | [YOLOv8n-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-pose.pt)       | 640                   | 50.4                  | 80.1               | 131.8                          | 1.18                                | 3.3                | 9.2               |

        | [YOLOv8s-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-pose.pt)       | 640                   | 60.0                  | 86.2               | 233.2                          | 1.42                                | 11.6               | 30.2              |

        | [YOLOv8m-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-pose.pt)       | 640                   | 65.0                  | 88.8               | 456.3                          | 2.00                                | 26.4               | 81.0              |

        | [YOLOv8l-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-pose.pt)       | 640                   | 67.6                  | 90.0               | 784.5                          | 2.59                                | 44.4               | 168.6             |

        | [YOLOv8x-pose](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose.pt)       | 640                   | 69.2                  | 90.2               | 1607.1                         | 3.73                                | 69.4               | 263.2             |

        | [YOLOv8x-pose-p6](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-pose-p6.pt) | 1280                  | 71.6                  | 91.2               | 4088.7                         | 10.04                               | 99.1               | 1066.4            |


    === "OBB (DOTAv1)"


        See [Oriented Detection Docs](https://docs.ultralytics.com/tasks/obb/) for usage examples with these models trained on [DOTAv1](https://docs.ultralytics.com/datasets/obb/dota-v2/#dota-v10/), which include 15 pre-trained classes.


        | Model                                                                                        | size<br><sup>(pixels) | mAP<sup>test<br>50   | Speed<br><sup>CPU ONNX<br>(ms)   | Speed<br><sup>A100 TensorRT<br>(ms)   | params<br><sup>(M)   | FLOPs<br><sup>(B) |

        |----------------------------------------------------------------------------------------------|-----------------------| -------------------- | -------------------------------- | ------------------------------------- | -------------------- | ----------------- |

        | [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8n-obb.pt) | 1024                  | 78.0                 | 204.77                           | 3.57                                  | 3.1                  | 23.3              |

        | [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8s-obb.pt) | 1024                  | 79.5                 | 424.88                           | 4.07                                  | 11.4                 | 76.3              |

        | [YOLOv8m-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8m-obb.pt) | 1024                  | 80.5                 | 763.48                           | 7.61                                  | 26.4                 | 208.6             |

        | [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8l-obb.pt) | 1024                  | 80.7                 | 1278.42                          | 11.83                                 | 44.5                 | 433.8             |

        | [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v8.1.0/yolov8x-obb.pt) | 1024                  | 81.36                | 1759.10                          | 13.23                                 | 69.5                 | 676.7             |


## Usage Examples

This example provides simple YOLOv8 training and inference examples. For full documentation on these and other [modes](../modes/index.md) see the [Predict](../modes/predict.md), [Train](../modes/train.md), [Val](../modes/val.md) and [Export](../modes/export.md) docs pages.

Note the below example is for YOLOv8 [Detect](../tasks/detect.md) models for object detection. For additional supported tasks see the [Segment](../tasks/segment.md), [Classify](../tasks/classify.md), [OBB](../tasks/obb.md) docs and [Pose](../tasks/pose.md) docs.

!!! Example

    === "Python"


        PyTorch pretrained `*.pt` models as well as configuration `*.yaml` files can be passed to the `YOLO()` class to create a model instance in python:


        ```python

        from ultralytics import YOLO


        # Load a COCO-pretrained YOLOv8n model

        model = YOLO('yolov8n.pt')


        # Display model information (optional)

        model.info()


        # Train the model on the COCO8 example dataset for 100 epochs

        results = model.train(data='coco8.yaml', epochs=100, imgsz=640)


        # Run inference with the YOLOv8n model on the 'bus.jpg' image

        results = model('path/to/bus.jpg')

        ```


    === "CLI"


        CLI commands are available to directly run the models:


        ```bash

        # Load a COCO-pretrained YOLOv8n model and train it on the COCO8 example dataset for 100 epochs

        yolo train model=yolov8n.pt data=coco8.yaml epochs=100 imgsz=640


        # Load a COCO-pretrained YOLOv8n model and run inference on the 'bus.jpg' image

        yolo predict model=yolov8n.pt source=path/to/bus.jpg

        ```


## Citations and Acknowledgements

If you use the YOLOv8 model or any other software from this repository in your work, please cite it using the following format:

!!! Quote ""

    === "BibTeX"


        ```bibtex

        @software{yolov8_ultralytics,

          author = {Glenn Jocher and Ayush Chaurasia and Jing Qiu},

          title = {Ultralytics YOLOv8},

          version = {8.0.0},

          year = {2023},

          url = {https://github.com/ultralytics/ultralytics},

          orcid = {0000-0001-5950-6979, 0000-0002-7603-6750, 0000-0003-3783-7069},

          license = {AGPL-3.0}

        }

        ```


Please note that the DOI is pending and will be added to the citation once it is available. YOLOv8 models are provided under [AGPL-3.0](https://github.com/ultralytics/ultralytics/blob/main/LICENSE) and [Enterprise](https://ultralytics.com/license) licenses.