File size: 12,763 Bytes
7370e5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
---

comments: true
description: Discover how to detect objects with rotation for higher precision using YOLOv8 OBB models. Learn, train, validate, and export OBB models effortlessly.
keywords: Oriented Bounding Boxes, OBB, Object Detection, YOLOv8, Ultralytics, DOTAv1, Model Training, Model Export, AI, Machine Learning
model_name: yolov8n-obb
---


# Oriented Bounding Boxes Object Detection

<!-- obb task poster -->

Oriented object detection goes a step further than object detection and introduce an extra angle to locate objects more accurate in an image.

The output of an oriented object detector is a set of rotated bounding boxes that exactly enclose the objects in the image, along with class labels and confidence scores for each box. Object detection is a good choice when you need to identify objects of interest in a scene, but don't need to know exactly where the object is or its exact shape.

<!-- youtube video link for obb task -->

!!! Tip "Tip"

    YOLOv8 OBB models use the `-obb` suffix, i.e. `yolov8n-obb.pt` and are pretrained on [DOTAv1](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/DOTAv1.yaml).


<table>
  <tr>
    <td align="center">

      <iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/Z7Z9pHF8wJc"

        title="YouTube video player" frameborder="0"

        allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"

        allowfullscreen>

      </iframe>

      <br>

      <strong>Watch:</strong> Object Detection using Ultralytics YOLOv8 Oriented Bounding Boxes (YOLOv8-OBB)

    </td>

    <td align="center">

      <iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/uZ7SymQfqKI"

        title="YouTube video player" frameborder="0"

        allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"

        allowfullscreen>

      </iframe>

      <br>

      <strong>Watch:</strong> Object Detection with YOLOv8-OBB using Ultralytics HUB

    </td>

  </tr>

</table>


## Visual Samples

|                                                    Ships Detection using OBB                                                    |                                                    Vehicle Detection using OBB                                                    |
| :-----------------------------------------------------------------------------------------------------------------------------: | :-------------------------------------------------------------------------------------------------------------------------------: |
| ![Ships Detection using OBB](https://github.com/RizwanMunawar/ultralytics/assets/62513924/5051d324-416f-4b58-ab62-f1bf9d7134b0) | ![Vehicle Detection using OBB](https://github.com/RizwanMunawar/ultralytics/assets/62513924/9a366262-910a-403b-a5e2-9c68b75700d3) |

## [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/v8)

YOLOv8 pretrained OBB models are shown here, which are pretrained on the [DOTAv1](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/DOTAv1.yaml) dataset.

[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.

| Model                                                                                        | size<br><sup>(pixels) | mAP<sup>test<br>50 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) |
| -------------------------------------------------------------------------------------------- | --------------------- | ------------------ | ------------------------------ | ----------------------------------- | ------------------ | ----------------- |
| [YOLOv8n-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-obb.pt) | 1024                  | 78.0               | 204.77                         | 3.57                                | 3.1                | 23.3              |
| [YOLOv8s-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-obb.pt) | 1024                  | 79.5               | 424.88                         | 4.07                                | 11.4               | 76.3              |
| [YOLOv8m-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-obb.pt) | 1024                  | 80.5               | 763.48                         | 7.61                                | 26.4               | 208.6             |
| [YOLOv8l-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-obb.pt) | 1024                  | 80.7               | 1278.42                        | 11.83                               | 44.5               | 433.8             |
| [YOLOv8x-obb](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-obb.pt) | 1024                  | 81.36              | 1759.10                        | 13.23                               | 69.5               | 676.7             |

- **mAP<sup>test</sup>** values are for single-model multiscale on [DOTAv1 test](https://captain-whu.github.io/DOTA/index.html) dataset. <br>Reproduce by `yolo val obb data=DOTAv1.yaml device=0 split=test` and submit merged results to [DOTA evaluation](https://captain-whu.github.io/DOTA/evaluation.html).
- **Speed** averaged over DOTAv1 val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val obb data=DOTAv1.yaml batch=1 device=0|cpu`

## Train

Train YOLOv8n-obb on the `dota8.yaml` dataset for 100 epochs at image size 640. For a full list of available arguments see the [Configuration](../usage/cfg.md) page.

!!! Example

    === "Python"


        ```python

        from ultralytics import YOLO


        # Load a model

        model = YOLO("yolov8n-obb.yaml")  # build a new model from YAML

        model = YOLO("yolov8n-obb.pt")  # load a pretrained model (recommended for training)

        model = YOLO("yolov8n-obb.yaml").load("yolov8n.pt")  # build from YAML and transfer weights


        # Train the model

        results = model.train(data="dota8.yaml", epochs=100, imgsz=640)

        ```


    === "CLI"


        ```bash

        # Build a new model from YAML and start training from scratch

        yolo obb train data=dota8.yaml model=yolov8n-obb.yaml epochs=100 imgsz=640


        # Start training from a pretrained *.pt model

        yolo obb train data=dota8.yaml model=yolov8n-obb.pt epochs=100 imgsz=640


        # Build a new model from YAML, transfer pretrained weights to it and start training

        yolo obb train data=dota8.yaml model=yolov8n-obb.yaml pretrained=yolov8n-obb.pt epochs=100 imgsz=640

        ```


### Dataset format

OBB dataset format can be found in detail in the [Dataset Guide](../datasets/obb/index.md).

## Val

Validate trained YOLOv8n-obb model accuracy on the DOTA8 dataset. No argument need to passed as the `model`
retains its training `data` and arguments as model attributes.

!!! Example

    === "Python"


        ```python

        from ultralytics import YOLO


        # Load a model

        model = YOLO("yolov8n-obb.pt")  # load an official model

        model = YOLO("path/to/best.pt")  # load a custom model


        # Validate the model

        metrics = model.val(data="dota8.yaml")  # no arguments needed, dataset and settings remembered

        metrics.box.map  # map50-95(B)

        metrics.box.map50  # map50(B)

        metrics.box.map75  # map75(B)

        metrics.box.maps  # a list contains map50-95(B) of each category

        ```


    === "CLI"


        ```bash

        yolo obb val model=yolov8n-obb.pt data=dota8.yaml  # val official model

        yolo obb val model=path/to/best.pt data=path/to/data.yaml  # val custom model

        ```


## Predict

Use a trained YOLOv8n-obb model to run predictions on images.

!!! Example

    === "Python"


        ```python

        from ultralytics import YOLO


        # Load a model

        model = YOLO("yolov8n-obb.pt")  # load an official model

        model = YOLO("path/to/best.pt")  # load a custom model


        # Predict with the model

        results = model("https://ultralytics.com/images/bus.jpg")  # predict on an image

        ```


    === "CLI"


        ```bash

        yolo obb predict model=yolov8n-obb.pt source='https://ultralytics.com/images/bus.jpg'  # predict with official model

        yolo obb predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg'  # predict with custom model

        ```


See full `predict` mode details in the [Predict](../modes/predict.md) page.

## Export

Export a YOLOv8n-obb model to a different format like ONNX, CoreML, etc.

!!! Example

    === "Python"


        ```python

        from ultralytics import YOLO


        # Load a model

        model = YOLO("yolov8n-obb.pt")  # load an official model

        model = YOLO("path/to/best.pt")  # load a custom trained model


        # Export the model

        model.export(format="onnx")

        ```


    === "CLI"


        ```bash

        yolo export model=yolov8n-obb.pt format=onnx  # export official model

        yolo export model=path/to/best.pt format=onnx  # export custom trained model

        ```


Available YOLOv8-obb export formats are in the table below. You can export to any format using the `format` argument, i.e. `format='onnx'` or `format='engine'`. You can predict or validate directly on exported models, i.e. `yolo predict model=yolov8n-obb.onnx`. Usage examples are shown for your model after export completes.

{% include "macros/export-table.md" %}

See full `export` details in the [Export](../modes/export.md) page.

## FAQ

### What are Oriented Bounding Boxes (OBB) and how do they differ from regular bounding boxes?

Oriented Bounding Boxes (OBB) include an additional angle to enhance object localization accuracy in images. Unlike regular bounding boxes, which are axis-aligned rectangles, OBBs can rotate to fit the orientation of the object better. This is particularly useful for applications requiring precise object placement, such as aerial or satellite imagery ([Dataset Guide](../datasets/obb/index.md)).

### How do I train a YOLOv8n-obb model using a custom dataset?

To train a YOLOv8n-obb model with a custom dataset, follow the example below using Python or CLI:

!!! Example

    === "Python"


        ```python

        from ultralytics import YOLO


        # Load a pretrained model

        model = YOLO("yolov8n-obb.pt")


        # Train the model

        results = model.train(data="path/to/custom_dataset.yaml", epochs=100, imgsz=640)

        ```


    === "CLI"


        ```bash

        yolo obb train data=path/to/custom_dataset.yaml model=yolov8n-obb.pt epochs=100 imgsz=640

        ```


For more training arguments, check the [Configuration](../usage/cfg.md) section.

### What datasets can I use for training YOLOv8-OBB models?

YOLOv8-OBB models are pretrained on datasets like [DOTAv1](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/DOTAv1.yaml) but you can use any dataset formatted for OBB. Detailed information on OBB dataset formats can be found in the [Dataset Guide](../datasets/obb/index.md).

### How can I export a YOLOv8-OBB model to ONNX format?

Exporting a YOLOv8-OBB model to ONNX format is straightforward using either Python or CLI:

!!! Example

    === "Python"


        ```python

        from ultralytics import YOLO


        # Load a model

        model = YOLO("yolov8n-obb.pt")


        # Export the model

        model.export(format="onnx")

        ```


    === "CLI"


        ```bash

        yolo export model=yolov8n-obb.pt format=onnx

        ```


For more export formats and details, refer to the [Export](../modes/export.md) page.

### How do I validate the accuracy of a YOLOv8n-obb model?

To validate a YOLOv8n-obb model, you can use Python or CLI commands as shown below:

!!! Example

    === "Python"


        ```python

        from ultralytics import YOLO


        # Load a model

        model = YOLO("yolov8n-obb.pt")


        # Validate the model

        metrics = model.val(data="dota8.yaml")

        ```


    === "CLI"


        ```bash

        yolo obb val model=yolov8n-obb.pt data=dota8.yaml

        ```


See full validation details in the [Val](../modes/val.md) section.