File size: 11,942 Bytes
7370e5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
---

comments: true
description: Master image classification using YOLOv8. Learn to train, validate, predict, and export models efficiently.
keywords: YOLOv8, image classification, AI, machine learning, pretrained models, ImageNet, model export, predict, train, validate
model_name: yolov8n-cls
---


# Image Classification

<img width="1024" src="https://user-images.githubusercontent.com/26833433/243418606-adf35c62-2e11-405d-84c6-b84e7d013804.png" alt="Image classification examples">

Image classification is the simplest of the three tasks and involves classifying an entire image into one of a set of predefined classes.

The output of an image classifier is a single class label and a confidence score. Image classification is useful when you need to know only what class an image belongs to and don't need to know where objects of that class are located or what their exact shape is.

<p align="center">
  <br>
  <iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/5BO0Il_YYAg"

    title="YouTube video player" frameborder="0"

    allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"

    allowfullscreen>
  </iframe>
  <br>
  <strong>Watch:</strong> Explore Ultralytics YOLO Tasks: Image Classification using Ultralytics HUB
</p>

!!! Tip "Tip"

    YOLOv8 Classify models use the `-cls` suffix, i.e. `yolov8n-cls.pt` and are pretrained on [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml).


## [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/v8)

YOLOv8 pretrained Classify models are shown here. Detect, Segment and Pose models are pretrained on the [COCO](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/coco.yaml) dataset, while Classify models are pretrained on the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml) dataset.

[Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models) download automatically from the latest Ultralytics [release](https://github.com/ultralytics/assets/releases) on first use.

| Model                                                                                        | size<br><sup>(pixels) | acc<br><sup>top1 | acc<br><sup>top5 | Speed<br><sup>CPU ONNX<br>(ms) | Speed<br><sup>A100 TensorRT<br>(ms) | params<br><sup>(M) | FLOPs<br><sup>(B) at 640 |
| -------------------------------------------------------------------------------------------- | --------------------- | ---------------- | ---------------- | ------------------------------ | ----------------------------------- | ------------------ | ------------------------ |
| [YOLOv8n-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8n-cls.pt) | 224                   | 69.0             | 88.3             | 12.9                           | 0.31                                | 2.7                | 4.3                      |
| [YOLOv8s-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8s-cls.pt) | 224                   | 73.8             | 91.7             | 23.4                           | 0.35                                | 6.4                | 13.5                     |
| [YOLOv8m-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8m-cls.pt) | 224                   | 76.8             | 93.5             | 85.4                           | 0.62                                | 17.0               | 42.7                     |
| [YOLOv8l-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8l-cls.pt) | 224                   | 76.8             | 93.5             | 163.0                          | 0.87                                | 37.5               | 99.7                     |
| [YOLOv8x-cls](https://github.com/ultralytics/assets/releases/download/v8.2.0/yolov8x-cls.pt) | 224                   | 79.0             | 94.6             | 232.0                          | 1.01                                | 57.4               | 154.8                    |

- **acc** values are model accuracies on the [ImageNet](https://www.image-net.org/) dataset validation set. <br>Reproduce by `yolo val classify data=path/to/ImageNet device=0`
- **Speed** averaged over ImageNet val images using an [Amazon EC2 P4d](https://aws.amazon.com/ec2/instance-types/p4/) instance. <br>Reproduce by `yolo val classify data=path/to/ImageNet batch=1 device=0|cpu`

## Train

Train YOLOv8n-cls on the MNIST160 dataset for 100 epochs at image size 64. For a full list of available arguments see the [Configuration](../usage/cfg.md) page.

!!! Example

    === "Python"


        ```python

        from ultralytics import YOLO


        # Load a model

        model = YOLO("yolov8n-cls.yaml")  # build a new model from YAML

        model = YOLO("yolov8n-cls.pt")  # load a pretrained model (recommended for training)

        model = YOLO("yolov8n-cls.yaml").load("yolov8n-cls.pt")  # build from YAML and transfer weights


        # Train the model

        results = model.train(data="mnist160", epochs=100, imgsz=64)

        ```


    === "CLI"


        ```bash

        # Build a new model from YAML and start training from scratch

        yolo classify train data=mnist160 model=yolov8n-cls.yaml epochs=100 imgsz=64


        # Start training from a pretrained *.pt model

        yolo classify train data=mnist160 model=yolov8n-cls.pt epochs=100 imgsz=64


        # Build a new model from YAML, transfer pretrained weights to it and start training

        yolo classify train data=mnist160 model=yolov8n-cls.yaml pretrained=yolov8n-cls.pt epochs=100 imgsz=64

        ```


### Dataset format

YOLO classification dataset format can be found in detail in the [Dataset Guide](../datasets/classify/index.md).

## Val

Validate trained YOLOv8n-cls model accuracy on the MNIST160 dataset. No argument need to passed as the `model` retains its training `data` and arguments as model attributes.

!!! Example

    === "Python"


        ```python

        from ultralytics import YOLO


        # Load a model

        model = YOLO("yolov8n-cls.pt")  # load an official model

        model = YOLO("path/to/best.pt")  # load a custom model


        # Validate the model

        metrics = model.val()  # no arguments needed, dataset and settings remembered

        metrics.top1  # top1 accuracy

        metrics.top5  # top5 accuracy

        ```


    === "CLI"


        ```bash

        yolo classify val model=yolov8n-cls.pt  # val official model

        yolo classify val model=path/to/best.pt  # val custom model

        ```


## Predict

Use a trained YOLOv8n-cls model to run predictions on images.

!!! Example

    === "Python"


        ```python

        from ultralytics import YOLO


        # Load a model

        model = YOLO("yolov8n-cls.pt")  # load an official model

        model = YOLO("path/to/best.pt")  # load a custom model


        # Predict with the model

        results = model("https://ultralytics.com/images/bus.jpg")  # predict on an image

        ```


    === "CLI"


        ```bash

        yolo classify predict model=yolov8n-cls.pt source='https://ultralytics.com/images/bus.jpg'  # predict with official model

        yolo classify predict model=path/to/best.pt source='https://ultralytics.com/images/bus.jpg'  # predict with custom model

        ```


See full `predict` mode details in the [Predict](../modes/predict.md) page.

## Export

Export a YOLOv8n-cls model to a different format like ONNX, CoreML, etc.

!!! Example

    === "Python"


        ```python

        from ultralytics import YOLO


        # Load a model

        model = YOLO("yolov8n-cls.pt")  # load an official model

        model = YOLO("path/to/best.pt")  # load a custom trained model


        # Export the model

        model.export(format="onnx")

        ```


    === "CLI"


        ```bash

        yolo export model=yolov8n-cls.pt format=onnx  # export official model

        yolo export model=path/to/best.pt format=onnx  # export custom trained model

        ```


Available YOLOv8-cls export formats are in the table below. You can export to any format using the `format` argument, i.e. `format='onnx'` or `format='engine'`. You can predict or validate directly on exported models, i.e. `yolo predict model=yolov8n-cls.onnx`. Usage examples are shown for your model after export completes.

{% include "macros/export-table.md" %}

See full `export` details in the [Export](../modes/export.md) page.

## FAQ

### What is the purpose of YOLOv8 in image classification?

YOLOv8 models, such as `yolov8n-cls.pt`, are designed for efficient image classification. They assign a single class label to an entire image along with a confidence score. This is particularly useful for applications where knowing the specific class of an image is sufficient, rather than identifying the location or shape of objects within the image.

### How do I train a YOLOv8 model for image classification?

To train a YOLOv8 model, you can use either Python or CLI commands. For example, to train a `yolov8n-cls` model on the MNIST160 dataset for 100 epochs at an image size of 64:

!!! Example

    === "Python"


        ```python

        from ultralytics import YOLO


        # Load a model

        model = YOLO("yolov8n-cls.pt")  # load a pretrained model (recommended for training)


        # Train the model

        results = model.train(data="mnist160", epochs=100, imgsz=64)

        ```


    === "CLI"


        ```bash

        yolo classify train data=mnist160 model=yolov8n-cls.pt epochs=100 imgsz=64

        ```


For more configuration options, visit the [Configuration](../usage/cfg.md) page.

### Where can I find pretrained YOLOv8 classification models?

Pretrained YOLOv8 classification models can be found in the [Models](https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/v8) section. Models like `yolov8n-cls.pt`, `yolov8s-cls.pt`, `yolov8m-cls.pt`, etc., are pretrained on the [ImageNet](https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/datasets/ImageNet.yaml) dataset and can be easily downloaded and used for various image classification tasks.

### How can I export a trained YOLOv8 model to different formats?

You can export a trained YOLOv8 model to various formats using Python or CLI commands. For instance, to export a model to ONNX format:

!!! Example

    === "Python"


        ```python

        from ultralytics import YOLO


        # Load a model

        model = YOLO("yolov8n-cls.pt")  # load the trained model


        # Export the model to ONNX

        model.export(format="onnx")

        ```


    === "CLI"


        ```bash

        yolo export model=yolov8n-cls.pt format=onnx  # export the trained model to ONNX format

        ```


For detailed export options, refer to the [Export](../modes/export.md) page.

### How do I validate a trained YOLOv8 classification model?

To validate a trained model's accuracy on a dataset like MNIST160, you can use the following Python or CLI commands:

!!! Example

    === "Python"


        ```python

        from ultralytics import YOLO


        # Load a model

        model = YOLO("yolov8n-cls.pt")  # load the trained model


        # Validate the model

        metrics = model.val()  # no arguments needed, uses the dataset and settings from training

        metrics.top1  # top1 accuracy

        metrics.top5  # top5 accuracy

        ```


    === "CLI"


        ```bash

        yolo classify val model=yolov8n-cls.pt  # validate the trained model

        ```


For more information, visit the [Validate](#val) section.