File size: 9,437 Bytes
7370e5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
---

comments: true
description: Enhance your security with real-time object detection using Ultralytics YOLOv8. Reduce false positives and integrate seamlessly with existing systems.
keywords: YOLOv8, Security Alarm System, real-time object detection, Ultralytics, computer vision, integration, false positives
---


# Security Alarm System Project Using Ultralytics YOLOv8

<img src="https://github.com/RizwanMunawar/ultralytics/assets/62513924/f4e4a613-fb25-4bd0-9ec5-78352ddb62bd" alt="Security Alarm System">

The Security Alarm System Project utilizing Ultralytics YOLOv8 integrates advanced computer vision capabilities to enhance security measures. YOLOv8, developed by Ultralytics, provides real-time object detection, allowing the system to identify and respond to potential security threats promptly. This project offers several advantages:

- **Real-time Detection:** YOLOv8's efficiency enables the Security Alarm System to detect and respond to security incidents in real-time, minimizing response time.
- **Accuracy:** YOLOv8 is known for its accuracy in object detection, reducing false positives and enhancing the reliability of the security alarm system.
- **Integration Capabilities:** The project can be seamlessly integrated with existing security infrastructure, providing an upgraded layer of intelligent surveillance.

<p align="center">
  <br>
  <iframe loading="lazy" width="720" height="405" src="https://www.youtube.com/embed/_1CmwUzoxY4"

    title="YouTube video player" frameborder="0"

    allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture; web-share"

    allowfullscreen>
  </iframe>
  <br>
  <strong>Watch:</strong> Security Alarm System Project with Ultralytics YOLOv8 Object Detection
</p>

### Code

#### Set up the parameters of the message

???+ tip "Note"

    App Password Generation is necessary


- Navigate to [App Password Generator](https://myaccount.google.com/apppasswords), designate an app name such as "security project," and obtain a 16-digit password. Copy this password and paste it into the designated password field as instructed.

```python

password = ""

from_email = ""  # must match the email used to generate the password

to_email = ""  # receiver email

```

#### Server creation and authentication

```python

import smtplib



server = smtplib.SMTP("smtp.gmail.com: 587")

server.starttls()

server.login(from_email, password)

```

#### Email Send Function

```python

from email.mime.multipart import MIMEMultipart

from email.mime.text import MIMEText





def send_email(to_email, from_email, object_detected=1):

    """Sends an email notification indicating the number of objects detected; defaults to 1 object."""

    message = MIMEMultipart()

    message["From"] = from_email

    message["To"] = to_email

    message["Subject"] = "Security Alert"

    # Add in the message body

    message_body = f"ALERT - {object_detected} objects has been detected!!"



    message.attach(MIMEText(message_body, "plain"))

    server.sendmail(from_email, to_email, message.as_string())

```

#### Object Detection and Alert Sender

```python

from time import time



import cv2

import torch



from ultralytics import YOLO

from ultralytics.utils.plotting import Annotator, colors





class ObjectDetection:

    def __init__(self, capture_index):

        """Initializes an ObjectDetection instance with a given camera index."""

        self.capture_index = capture_index

        self.email_sent = False



        # model information

        self.model = YOLO("yolov8n.pt")



        # visual information

        self.annotator = None

        self.start_time = 0

        self.end_time = 0



        # device information

        self.device = "cuda" if torch.cuda.is_available() else "cpu"



    def predict(self, im0):

        """Run prediction using a YOLO model for the input image `im0`."""

        results = self.model(im0)

        return results



    def display_fps(self, im0):

        """Displays the FPS on an image `im0` by calculating and overlaying as white text on a black rectangle."""

        self.end_time = time()

        fps = 1 / round(self.end_time - self.start_time, 2)

        text = f"FPS: {int(fps)}"

        text_size = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 1.0, 2)[0]

        gap = 10

        cv2.rectangle(

            im0,

            (20 - gap, 70 - text_size[1] - gap),

            (20 + text_size[0] + gap, 70 + gap),

            (255, 255, 255),

            -1,

        )

        cv2.putText(im0, text, (20, 70), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 0), 2)



    def plot_bboxes(self, results, im0):

        """Plots bounding boxes on an image given detection results; returns annotated image and class IDs."""

        class_ids = []

        self.annotator = Annotator(im0, 3, results[0].names)

        boxes = results[0].boxes.xyxy.cpu()

        clss = results[0].boxes.cls.cpu().tolist()

        names = results[0].names

        for box, cls in zip(boxes, clss):

            class_ids.append(cls)

            self.annotator.box_label(box, label=names[int(cls)], color=colors(int(cls), True))

        return im0, class_ids



    def __call__(self):

        """Run object detection on video frames from a camera stream, plotting and showing the results."""

        cap = cv2.VideoCapture(self.capture_index)

        assert cap.isOpened()

        cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)

        cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)

        frame_count = 0

        while True:

            self.start_time = time()

            ret, im0 = cap.read()

            assert ret

            results = self.predict(im0)

            im0, class_ids = self.plot_bboxes(results, im0)



            if len(class_ids) > 0:  # Only send email If not sent before

                if not self.email_sent:

                    send_email(to_email, from_email, len(class_ids))

                    self.email_sent = True

            else:

                self.email_sent = False



            self.display_fps(im0)

            cv2.imshow("YOLOv8 Detection", im0)

            frame_count += 1

            if cv2.waitKey(5) & 0xFF == 27:

                break

        cap.release()

        cv2.destroyAllWindows()

        server.quit()

```

#### Call the Object Detection class and Run the Inference

```python

detector = ObjectDetection(capture_index=0)

detector()

```

That's it! When you execute the code, you'll receive a single notification on your email if any object is detected. The notification is sent immediately, not repeatedly. However, feel free to customize the code to suit your project requirements.

#### Email Received Sample

<img width="256" src="https://github.com/RizwanMunawar/ultralytics/assets/62513924/db79ccc6-aabd-4566-a825-b34e679c90f9" alt="Email Received Sample">

## FAQ

### How does Ultralytics YOLOv8 improve the accuracy of a security alarm system?

Ultralytics YOLOv8 enhances security alarm systems by delivering high-accuracy, real-time object detection. Its advanced algorithms significantly reduce false positives, ensuring that the system only responds to genuine threats. This increased reliability can be seamlessly integrated with existing security infrastructure, upgrading the overall surveillance quality.

### Can I integrate Ultralytics YOLOv8 with my existing security infrastructure?

Yes, Ultralytics YOLOv8 can be seamlessly integrated with your existing security infrastructure. The system supports various modes and provides flexibility for customization, allowing you to enhance your existing setup with advanced object detection capabilities. For detailed instructions on integrating YOLOv8 in your projects, visit the [integration section](https://docs.ultralytics.com/integrations/).

### What are the storage requirements for running Ultralytics YOLOv8?

Running Ultralytics YOLOv8 on a standard setup typically requires around 5GB of free disk space. This includes space for storing the YOLOv8 model and any additional dependencies. For cloud-based solutions, Ultralytics HUB offers efficient project management and dataset handling, which can optimize storage needs. Learn more about the [Pro Plan](../hub/pro.md) for enhanced features including extended storage.

### What makes Ultralytics YOLOv8 different from other object detection models like Faster R-CNN or SSD?

Ultralytics YOLOv8 provides an edge over models like Faster R-CNN or SSD with its real-time detection capabilities and higher accuracy. Its unique architecture allows it to process images much faster without compromising on precision, making it ideal for time-sensitive applications like security alarm systems. For a comprehensive comparison of object detection models, you can explore our [guide](https://docs.ultralytics.com/models).

### How can I reduce the frequency of false positives in my security system using Ultralytics YOLOv8?

To reduce false positives, ensure your Ultralytics YOLOv8 model is adequately trained with a diverse and well-annotated dataset. Fine-tuning hyperparameters and regularly updating the model with new data can significantly improve detection accuracy. Detailed hyperparameter tuning techniques can be found in our [hyperparameter tuning guide](../guides/hyperparameter-tuning.md).