File size: 9,890 Bytes
7370e5c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
---

comments: true
description: Learn about dataset formats compatible with Ultralytics YOLO for robust object detection. Explore supported datasets and learn how to convert formats.
keywords: Ultralytics, YOLO, object detection datasets, dataset formats, COCO, dataset conversion, training datasets
---


# Object Detection Datasets Overview

Training a robust and accurate object detection model requires a comprehensive dataset. This guide introduces various formats of datasets that are compatible with the Ultralytics YOLO model and provides insights into their structure, usage, and how to convert between different formats.

## Supported Dataset Formats

### Ultralytics YOLO format

The Ultralytics YOLO format is a dataset configuration format that allows you to define the dataset root directory, the relative paths to training/validation/testing image directories or `*.txt` files containing image paths, and a dictionary of class names. Here is an example:

```yaml

# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]

path: ../datasets/coco8  # dataset root dir

train: images/train  # train images (relative to 'path') 4 images

val: images/val  # val images (relative to 'path') 4 images

test:  # test images (optional)



# Classes (80 COCO classes)

names:

  0: person

  1: bicycle

  2: car

  # ...

  77: teddy bear

  78: hair drier

  79: toothbrush

```

Labels for this format should be exported to YOLO format with one `*.txt` file per image. If there are no objects in an image, no `*.txt` file is required. The `*.txt` file should be formatted with one row per object in `class x_center y_center width height` format. Box coordinates must be in **normalized xywh** format (from 0 to 1). If your boxes are in pixels, you should divide `x_center` and `width` by image width, and `y_center` and `height` by image height. Class numbers should be zero-indexed (start with 0).

<p align="center"><img width="750" src="https://user-images.githubusercontent.com/26833433/91506361-c7965000-e886-11ea-8291-c72b98c25eec.jpg" alt="Example labelled image"></p>

The label file corresponding to the above image contains 2 persons (class `0`) and a tie (class `27`):

<p align="center"><img width="428" src="https://user-images.githubusercontent.com/26833433/112467037-d2568c00-8d66-11eb-8796-55402ac0d62f.png" alt="Example label file"></p>

When using the Ultralytics YOLO format, organize your training and validation images and labels as shown in the [COCO8 dataset](coco8.md) example below.

<p align="center"><img width="800" src="https://github.com/IvorZhu331/ultralytics/assets/26833433/a55ec82d-2bb5-40f9-ac5c-f935e7eb9f07" alt="Example dataset directory structure"></p>

## Usage

Here's how you can use these formats to train your model:

!!! Example

    === "Python"


        ```python

        from ultralytics import YOLO


        # Load a model

        model = YOLO("yolov8n.pt")  # load a pretrained model (recommended for training)


        # Train the model

        results = model.train(data="coco8.yaml", epochs=100, imgsz=640)

        ```


    === "CLI"


        ```bash

        # Start training from a pretrained *.pt model

        yolo detect train data=coco8.yaml model=yolov8n.pt epochs=100 imgsz=640

        ```


## Supported Datasets

Here is a list of the supported datasets and a brief description for each:

- [Argoverse](argoverse.md): A dataset containing 3D tracking and motion forecasting data from urban environments with rich annotations.
- [COCO](coco.md): Common Objects in Context (COCO) is a large-scale object detection, segmentation, and captioning dataset with 80 object categories.
- [LVIS](lvis.md): A large-scale object detection, segmentation, and captioning dataset with 1203 object categories.
- [COCO8](coco8.md): A smaller subset of the first 4 images from COCO train and COCO val, suitable for quick tests.
- [Global Wheat 2020](globalwheat2020.md): A dataset containing images of wheat heads for the Global Wheat Challenge 2020.
- [Objects365](objects365.md): A high-quality, large-scale dataset for object detection with 365 object categories and over 600K annotated images.
- [OpenImagesV7](open-images-v7.md): A comprehensive dataset by Google with 1.7M train images and 42k validation images.
- [SKU-110K](sku-110k.md): A dataset featuring dense object detection in retail environments with over 11K images and 1.7 million bounding boxes.
- [VisDrone](visdrone.md): A dataset containing object detection and multi-object tracking data from drone-captured imagery with over 10K images and video sequences.
- [VOC](voc.md): The Pascal Visual Object Classes (VOC) dataset for object detection and segmentation with 20 object classes and over 11K images.
- [xView](xview.md): A dataset for object detection in overhead imagery with 60 object categories and over 1 million annotated objects.
- [Roboflow 100](roboflow-100.md): A diverse object detection benchmark with 100 datasets spanning seven imagery domains for comprehensive model evaluation.
- [Brain-tumor](brain-tumor.md): A dataset for detecting brain tumors includes MRI or CT scan images with details on tumor presence, location, and characteristics.
- [African-wildlife](african-wildlife.md): A dataset featuring images of African wildlife, including buffalo, elephant, rhino, and zebras.
- [Signature](signature.md): A dataset featuring images of various documents with annotated signatures, supporting document verification and fraud detection research.

### Adding your own dataset

If you have your own dataset and would like to use it for training detection models with Ultralytics YOLO format, ensure that it follows the format specified above under "Ultralytics YOLO format". Convert your annotations to the required format and specify the paths, number of classes, and class names in the YAML configuration file.

## Port or Convert Label Formats

### COCO Dataset Format to YOLO Format

You can easily convert labels from the popular COCO dataset format to the YOLO format using the following code snippet:

!!! Example

    === "Python"


        ```python

        from ultralytics.data.converter import convert_coco


        convert_coco(labels_dir="path/to/coco/annotations/")

        ```


This conversion tool can be used to convert the COCO dataset or any dataset in the COCO format to the Ultralytics YOLO format.

Remember to double-check if the dataset you want to use is compatible with your model and follows the necessary format conventions. Properly formatted datasets are crucial for training successful object detection models.

## FAQ

### What is the Ultralytics YOLO dataset format and how to structure it?

The Ultralytics YOLO format is a structured configuration for defining datasets in your training projects. It involves setting paths to your training, validation, and testing images and corresponding labels. For example:

```yaml

path: ../datasets/coco8  # dataset root directory

train: images/train  # training images (relative to 'path')

val: images/val  # validation images (relative to 'path')

test:  # optional test images

names:

  0: person

  1: bicycle

  2: car

  # ...

```

Labels are saved in `*.txt` files with one file per image, formatted as `class x_center y_center width height` with normalized coordinates. For a detailed guide, see the [COCO8 dataset example](coco8.md).

### How do I convert a COCO dataset to the YOLO format?

You can convert a COCO dataset to the YOLO format using the Ultralytics conversion tools. Here's a quick method:

```python

from ultralytics.data.converter import convert_coco



convert_coco(labels_dir="path/to/coco/annotations/")

```

This code will convert your COCO annotations to YOLO format, enabling seamless integration with Ultralytics YOLO models. For additional details, visit the [Port or Convert Label Formats](#port-or-convert-label-formats) section.

### Which datasets are supported by Ultralytics YOLO for object detection?

Ultralytics YOLO supports a wide range of datasets, including:

- [Argoverse](argoverse.md)
- [COCO](coco.md)
- [LVIS](lvis.md)
- [COCO8](coco8.md)
- [Global Wheat 2020](globalwheat2020.md)
- [Objects365](objects365.md)
- [OpenImagesV7](open-images-v7.md)

Each dataset page provides detailed information on the structure and usage tailored for efficient YOLOv8 training. Explore the full list in the [Supported Datasets](#supported-datasets) section.

### How do I start training a YOLOv8 model using my dataset?

To start training a YOLOv8 model, ensure your dataset is formatted correctly and the paths are defined in a YAML file. Use the following script to begin training:

!!! Example

    === "Python"

    

        ```python

        from ultralytics import YOLO


        model = YOLO("yolov8n.pt")  # Load a pretrained model

        results = model.train(data="path/to/your_dataset.yaml", epochs=100, imgsz=640)

        ```


    === "CLI"

    

        ```bash

        yolo detect train data=path/to/your_dataset.yaml model=yolov8n.pt epochs=100 imgsz=640

        ```


Refer to the [Usage](#usage) section for more details on utilizing different modes, including CLI commands.

### Where can I find practical examples of using Ultralytics YOLO for object detection?

Ultralytics provides numerous examples and practical guides for using YOLOv8 in diverse applications. For a comprehensive overview, visit the [Ultralytics Blog](https://www.ultralytics.com/blog) where you can find case studies, detailed tutorials, and community stories showcasing object detection, segmentation, and more with YOLOv8. For specific examples, check the [Usage](../../modes/predict.md) section in the documentation.