Spaces:
Sleeping
Sleeping
File size: 4,751 Bytes
1358711 eb1168d 4d6e8c2 1358711 eb1168d 4d6e8c2 eb1168d 1c33274 70f5f26 eb1168d 4d6e8c2 70f5f26 4d6e8c2 1358711 eb1168d 1358711 eb1168d 1358711 4d6e8c2 70f5f26 d778205 eb1168d 1358711 eb1168d 1358711 eb1168d f63546e d778205 f63546e eb1168d d778205 1358711 d778205 4d6e8c2 d778205 eb1168d d778205 eb1168d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import torch
from torch.utils.data import Dataset, DataLoader
from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
router = APIRouter()
DESCRIPTION = "Climate Disinformation Detection"
ROUTE = "/text"
@router.post(ROUTE, tags=["Text Task"], description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
"""
Evaluate text classification for climate disinformation detection.
"""
# Get space info
username, space_url = get_space_info()
# Define the label mapping
LABEL_MAPPING = {
"0_not_relevant": 0,
"1_not_happening": 1,
"2_not_human": 2,
"3_not_bad": 3,
"4_solutions_harmful_unnecessary": 4,
"5_science_unreliable": 5,
"6_proponents_biased": 6,
"7_fossil_fuels_needed": 7
}
# Load and prepare the dataset
dataset = load_dataset(request.dataset_name)
# Convert string labels to integers
dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})
# Split dataset
train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
test_dataset = train_test["test"]
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
try:
# Get texts and labels
texts = test_dataset["quote"]
labels = test_dataset["label"]
# Load model and tokenizer from local directory
model_dir = "./"
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelForSequenceClassification.from_pretrained(model_dir)
# Define dataset class
class TextDataset(Dataset):
def __init__(self, texts, labels, tokenizer, max_len=128):
self.texts = texts
self.labels = labels
self.tokenizer = tokenizer
self.max_len = max_len
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
text = self.texts[idx]
label = self.labels[idx]
encodings = self.tokenizer(
text,
max_length=self.max_len,
padding='max_length',
truncation=True,
return_tensors="pt"
)
return {
'input_ids': encodings['input_ids'].squeeze(0),
'attention_mask': encodings['attention_mask'].squeeze(0),
'labels': torch.tensor(label, dtype=torch.long)
}
# Create dataset and dataloader
test_dataset = TextDataset(texts, labels, tokenizer)
test_loader = DataLoader(test_dataset, batch_size=16)
# Model inference
model.eval()
predictions = []
ground_truth = []
device = 'cpu'
with torch.no_grad():
for batch in test_loader:
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['labels'].to(device)
outputs = model(input_ids=input_ids, attention_mask=attention_mask)
_, predicted = torch.max(outputs.logits, 1)
predictions.extend(predicted.cpu().numpy())
ground_truth.extend(labels.cpu().numpy())
# Stop tracking emissions
emissions_data = tracker.stop_task()
# Calculate accuracy
accuracy = accuracy_score(test_dataset["label"], predictions)
# Prepare results
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
return results
except Exception as e:
# Stop tracking in case of error
tracker.stop_task()
raise e |