Spaces:
Sleeping
Sleeping
File size: 3,954 Bytes
a5b88b1 b6d6cad a5b88b1 b6d6cad a5b88b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import streamlit as st
import jax
import jax.numpy as jnp
import matplotlib.pyplot as plt
def parabola_fn(x):
return x**0.5
def circle_fn(x):
return (1 - x**2) ** 0.5
d_parabola_fn = jax.grad(parabola_fn)
d_circle_fn = jax.grad(circle_fn)
def loss_fn(params):
x1 = params["x1"]
x2 = params["x2"]
# parpendicular line to the tangent of the parabola: y = m1 * x + c1
m1 = -1 / d_parabola_fn(x1)
c1 = parabola_fn(x1) - m1 * x1
def perpendicular_parabola_fn(x):
return m1 * x + c1
# parpendicular line to the tangent of the circle: y = m2 * x + c2
m2 = -1 / d_circle_fn(x2)
c2 = circle_fn(x2) - m2 * x2
def perpendicular_circle_fn(x):
return m2 * x + c2
# x_star and y_star are the intersection of the two lines
x_star = (c2 - c1) / (m1 - m2)
y_star = m1 * x_star + c1
# three quantities should be equal to each other
# 1. distance between intersection and parabola
# 2. distance between intersection and circle
# 3. distance between intersection and x=0 line
d1 = (x_star - x1) ** 2 + (y_star - parabola_fn(x1)) ** 2
d2 = (x_star - x2) ** 2 + (y_star - circle_fn(x2)) ** 2
d3 = x_star**2
aux = {
"x_star": x_star,
"y_star": y_star,
"perpendicular_parabola_fn": perpendicular_parabola_fn,
"perpendicular_circle_fn": perpendicular_circle_fn,
"r": d1**0.5,
}
# final loss
loss = (d1 - d2) ** 2 + (d1 - d3) ** 2 + (d2 - d3) ** 2
return loss, aux
x = jnp.linspace(0, 1, 100)
st.title("Radius of the Circle: Optimization Playground")
col1, col2 = st.columns(2)
x1 = col1.slider("initial x1 (x intersection with parabola)", 0.0, 1.0, 0.5)
x2 = col1.slider("initial x2 (x intersection with the circle)", 0.0, 1.0, 0.5)
n_epochs = col2.slider("n_epochs", 0, 1000, 50)
lr = col2.slider("lr", 0.0, 1.0, value=0.1, step=0.01)
# submit button
submit = st.button("submit")
# when submit button is clicked run the following code
params = {"x1": x1, "x2": x2}
losses = []
value_and_grad_fn = jax.value_and_grad(loss_fn, has_aux=True)
# initialize plot
fig, axes = plt.subplots(1, 2, figsize=(12, 6))
axes[0].set_xlim(0, 1)
axes[0].set_ylim(0, 1)
axes[0].set_aspect("equal")
value, aux = loss_fn(params)
(pbola_plot,) = axes[0].plot(x, parabola_fn(x), color="red")
(pbola_perpendicular_plot,) = axes[0].plot(x, aux["perpendicular_parabola_fn"](x), color="red", linestyle="--")
(cicle_plot,) = axes[0].plot(x, circle_fn(x), color="blue")
(circle_perpendicular_plot,) = axes[0].plot(x, aux["perpendicular_circle_fn"](x), color="blue", linestyle="--")
x_star, y_star = aux["x_star"], aux["y_star"]
radius = aux["r"]
axes[0].add_patch(plt.Circle((x_star, y_star), radius, fill=False))
axes[1].set_xlim(0, n_epochs)
axes[1].set_ylim(0, value)
(loss_plot,) = axes[1].plot(losses, color="black")
pbar = st.progress(0)
with st.empty():
st.pyplot(fig)
if submit:
for i in range(n_epochs):
(value, _), grad = value_and_grad_fn(params)
params["x1"] -= lr * grad["x1"]
params["x2"] -= lr * grad["x2"]
losses.append(value)
_, aux = loss_fn(params)
print(params, grad, lr)
pbola_plot.set_data(x, parabola_fn(x))
pbola_perpendicular_plot.set_data(x, aux["perpendicular_parabola_fn"](x))
cicle_plot.set_data(x, circle_fn(x))
circle_perpendicular_plot.set_data(x, aux["perpendicular_circle_fn"](x))
x_star, y_star = aux["x_star"], aux["y_star"]
radius = aux["r"]
axes[0].add_patch(plt.Circle((x_star, y_star), radius, fill=False))
loss_plot.set_data(range(len(losses)), losses)
pbar.progress(i / n_epochs)
axes[0].set_title(f"x1: {params['x1']:.3f}, x2: {params['x2']:.3f} \n r: {radius:.4f}")
axes[1].set_title(f"epoch: {i}, loss: {value:.5f}")
st.pyplot(fig)
|